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Abstract

We generalize exactness to games with non-transferable utility
(NTU). In an exact game for each coalition there is a core allocation
on the boundary of its payoff set.

Convex games with transferable utility are well-known to be ex-
act. We study five generalizations of convexity in the NTU setting.
We show that each of ordinal, coalition merge, individual merge and
marginal convexity can be unified under NTU exactness. We provide
an example of a cardinally convex game which is not NTU exact.

Finally, we relate the classes of Π-balanced, totally Π-balanced,
NTU exact, totally NTU exact, ordinally convex, cardinally convex,
coalition merge convex, individual merge convex and marginal convex
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games to one another.
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1 Introduction

Convex cooperative games with transferable utility (TU) introduced by Shap-
ley (1971) arise from a wide range of applications. Airport games (Littlechild
and Owen, 1973), bankruptcy games (Aumann and Maschler, 1985), sequenc-
ing games (Curiel, Pederzoli, and Tijs, 1989) and standard tree games (Gra-
not, Maschler, Owen, and Zhu, 1996) are all convex.

Convex TU games are exact (Schmeidler, 1972). In an exact game for
each coalition there is a core allocation such that the coalition only gets its
stand-alone value. Calleja, Borm, and Hendrickx (2005) show that the class
of multi-issue allocation games coincides with the class of non-negative exact
games. Csóka, Herings, and Kóczy (2008) demonstrate that the class of exact
games equals the class of risk allocation games with no aggregate uncertainty.

Although transferable utility has proved itself to be a very valuable work-
horse, it is a restrictive assumption, and generalizations of convexity and ex-
actness to the non-transferable utility case are highly desired. Vilkov (1977)
and Sharkey (1981) have extended convexity to games with non-transferable
utility (NTU) to define ordinal and cardinal convexity, respectively. Hen-
drickx, Borm, and Timmer (2002) analyze coalition merge convexity, indi-
vidual merge convexity, and marginal convexity in an NTU setting. The
aforementioned five classes of NTU convex games do not coincide in gen-
eral. The only general result (restated in this paper as Theorem 2.14) is that
coalition merge convexity implies individual merge convexity, and individual
merge convexity implies marginal convexity.

In this paper we generalize exactness to the NTU setting. In an exact
NTU game for each coalition there is a core element on the boundary of
its payoff set, meaning that this coalition does not necessarily benefit from
the gains of forming the grand coalition in an allocation which is robust
against all coalitional deviations. We show that each of ordinal, coalition
merge, individual merge, and marginal convexity implies NTU exactness.
We provide an example of a cardinally convex game which is not NTU exact.

The structure of the paper is as follows. We start with the notation and
the necessary definitions for TU and NTU games. In Section 3 we define
NTU exactness and from this perspective analyze the five classes of NTU
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convex games. In Section 4 we conclude by relating the various classes of
NTU games to one another.

2 Notation, Definitions, Existing Results

Let N = {1, . . . , n} denote the finite set of players, 2N = {C | C ⊆ N} is
the power set of N , N = 2N \ {∅} is the collection of coalitions, the non-
empty subsets of N. Let R denote the set of all real numbers. RN is the
n-dimensional Euclidean space generated by the set of players. An element
of RN is denoted by a vector x = (xi)i∈N . For a coalition C ∈ N , let
xC = (xi)i∈C denote the restriction of x on C. For x, y ∈ RN , y ≥ x denotes
yi ≥ xi for all i ∈ N , and y À x denotes yi > xi for all i ∈ N .

Let ∆N denote the unit simplex in RN , ∆N = {x ∈ RN | xi ≥ 0,
∑

i∈N xi =
1}. For every C ∈ N define the set ∆C = {x ∈ ∆N | ∑

i∈C xi = 1}, and let
∆ be a Cartesian product of ∆C over all C ∈ N . Let ∆N denote the unit
simplex in RN , ∆N = {λ ∈ RN | λC ≥ 0,

∑
C∈N λC = 1}.

For a set A ⊆ RN , the symbols cl A, ∂A and int A denote, respectively,
the closure, the boundary and the interior of A. For x ∈ RN , x ∈ cl A if
there exists a sequence (xk)k∈N with xk ∈ A for all k ∈ N and (xk)k∈N → x;
x ∈ ∂A if x ∈ cl A ∩ cl (RN \ A); and x ∈ int A if x ∈ A \ ∂A.

2.1 Transferable Utility Games

A value function v : 2N → R satisfying v(∅) = 0 gives rise to a cooperative
game with transferable utility (TU game, for short) (N, v). Let ΓTU denote
the set of TU games with n players. A utility allocation is a vector x ∈
RN , where xi is the payoff of player i ∈ N . For a coalition C ∈ N , let
x(C) =

∑
i∈C xi. An allocation x ∈ RN is called efficient if x(N) = v(N),

individually rational if xi ≥ v({i}) for all i ∈ N, and coalitionally rational if
x(C) ≥ v(C) for all C ∈ N . The core is the set of efficient and coalitionally
rational allocations.

Shapley (1971) and Schmeidler (1972) introduce exact TU games.

Definition 2.1. A TU game (N, v) is exact if for each C ∈ 2N there exists
a core allocation x such that x(C) = v(C).

Let ΓTU
e denote the class of exact TU games with the player set N . Convex

TU games (Shapley, 1971) can be defined and characterized as follows.
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Definition 2.2. A TU game (N, v) is convex if it satisfies the following three
equivalent conditions:

∀S, T ∈ 2N : v(S) + v(T ) ≤ v(S ∪ T ) + v(S ∩ T ), (1)

∀U ∈ 2N ;∀S ( T ⊆ N \ U : v(S ∪ U)− v(S) ≤ v(T ∪ U)− v(T ), (2)

∀i ∈ N ; ∀S ( T ⊆ N \ {i}: v(S ∪ {i})− v(S) ≤ v(T ∪ {i})− v(T ). (3)

Let ΓTU
c denote the class of convex TU games with the player set N .

A permutation of the players in N is a bijection σ : {1, . . . , n} → N ,
where σ(i) denotes which player in N is at position i, and σ−1(i) denotes the
position of player i. Let ΣN denote the set of all permutations on N . For a
permutation σ ∈ ΣN , P σ

i = {j ∈ N | σ−1(j) < σ−1(i)} denotes the coalition
of players which precede i with respect to the order σ. In a permutation
σ ∈ ΣN , mσ

i (v) = v(P σ
i ∪ {i}) − v(P σ

i ) denotes the marginal contribution
of player i to the preceding players, and mσ(v) = (mσ

1 (v),mσ
2 (v), . . . , mσ

n(v))
is the vector of marginal contributions. Shapley (1971) and Ichiishi (1981)
characterize convex TU games as follows.

Theorem 2.3. The TU game (N, v) is convex if and only if mσ(v) belongs
to the core of (N, v) for all σ ∈ ΣN .

Theorem 2.3 implies directly the following theorem.

Theorem 2.4. If a TU game (N, v) is convex, then it is exact, ΓTU
c ⊆ ΓTU

e .

For a TU game (N, v) and a coalition C ∈ N the subgame (C, vC) is
obtained by restricting v to subsets of C. Following Biswas, Parthasarathy,
Potters, and Voorneveld (1999), we define totally exact TU games.

Definition 2.5. A TU game (N, v) is totally exact if for every C ∈ N its
subgame (C, vC) is exact.

Let ΓTU
te denote the class of totally exact TU games with the player set N .

Biswas, Parthasarathy, Potters, and Voorneveld (1999) show the following
theorem.

Theorem 2.6. A TU game is totally exact if and only if it is convex, that
is ΓTU

te = ΓTU
c .

2.2 Non-transferable Utility Games

A cooperative game with non-transferable utility (NTU game, for short) (N, V )
is a family of sets V = 〈V (S)〉S∈2N satisfying the following assumptions:
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V (∅) = ∅, (4)

V (S) = Vp(S)× RN\S, where Vp(S) ⊆ RS, for all S ∈ N , (5)

0 ∈ V (S) for all S ∈ N , (6)

V (N) is closed, (7)

comprehensiveness: if x ∈ V (S), y ∈ RN , yS ≤ xS, then y ∈ V (S), (8)

the sets V +
p (S) = {xS ∈ RS

+ | x ∈ Vp(S)} are bounded for all S ∈ N . (9)

Let ΓNTU denote the set of NTU games with the player set N .
The core of an NTU game (N, V ), C(V ) consists of those elements x ∈

V (N) for which it holds that there exist no S ∈ N and y ∈ V (S) such that
xS ¿ yS, which by comprehensiveness is equivalent to x /∈ int V (S) for any
S ∈ N . Therefore,

C(V ) = V (N) \
⋃

S∈N
int V (S). (10)

Predtetchinski and Herings (2004) provide the following balancedness
condition for NTU games.

Definition 2.7. Consider a convex-valued correspondence Π : RN → ∆
with a closed graph. The NTU game (N, V ) is Π-balanced provided that the
following condition is satisfied: If x ∈ RN , π ∈ Π(x), and λ ∈ ∆N are such
that

x ∈
⋂

S∈N ,λS>0

V (S),

πN =
∑
S∈N

λSπS,

then x ∈ V (N).

Π-balancedness is a necessary and sufficient condition for the core in a
non-transferable utility game to be non-empty. Let ΓNTU

Π−b denote the class of
Π-balanced NTU games with the player set N .

For an NTU game (N, V ) and a coalition S ∈ N a subgame (S, V S) is
obtained by restricting V to subsets of S and projecting these sets on RS, and
setting V S(S) = cl Vp(S) to have a closed payoff set for the grand coalition
in the subgame. Let ΓNTU

t−Π−b denote the class of totally Π-balanced NTU
games with the player set N , the class of games with a non-empty core in
each subgame.

NTU convex games have been defined in five ways.
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Definition 2.8. (Vilkov, 1977) An NTU game (N, V ) is ordinally convex if
for all S, T ∈ N we have V (S) ∩ V (T ) ⊆ V (S ∩ T ) ∪ V (S ∪ T ).

Let ΓNTU
oc denote the class of ordinally convex NTU games with the player

set N . Ordinally convex NTU games have numerous applications. Peleg
(1984) transforms a social choice situation with a convex effectivity function
into an NTU game which is ordinally convex. Demange (1987) provides two
examples: a model of public goods and a production economy with increasing
returns to scale; Masuzawa (2003) adds N -person prisoners’ dilemma games
and oligopoly models to this class.

For S ∈ N let V ◦(S) = {x ∈ V (S) | xi = 0 for all i ∈ N \ S} and let
V ◦(∅) = 0N . Note that V ◦(S) = Vp(S)× {

0N\S}
, for all S ∈ N .

Definition 2.9. (Sharkey, 1981) An NTU game (N, V ) is cardinally convex
if for all S, T ∈ N we have V ◦(S) + V ◦(T ) ⊆ V ◦(S ∩ T ) + V ◦(S ∪ T ).

Let ΓNTU
cc denote the class of cardinally convex NTU games with the player

set N .
To discuss the three marginalistic interpretations of NTU convexity (coali-

tion merge, individual merge and marginal convexity) introduced by Hen-
drickx, Borm, and Timmer (2002), we need the following definitions. Note
that the definitions are slightly modified as Hendrickx, Borm, and Timmer
(2002) use a different set of assumptions defining an NTU game. Instead of
Assumptions (4)-(9) they assume that V (S) ⊆ RS and V (S) is closed for all
S ∈ N ; they do not define V (∅); and they assume zero normalization and
monotonicity.

An NTU game (N, V ) is zero normalized if V ({i}) = {x ∈ RN : xi ≤ 0}
for all i ∈ N ; it is monotone if for all S, T ∈ 2N with S ⊆ T , for all
x ∈ V (S) there exists y ∈ V (T ) such that yS ≥ xS. The set of weakly
Pareto efficient allocations for coalition S ∈ N is defined by WP(S) = {x ∈
cl V (S) | @y ∈ V (S) : yS À xS}. Let αi = sup{xi | x ∈ V ({i})}, i ∈ N .
The set of individually rational allocations for coalition S ∈ N is defined
by IR(S) = {x ∈ cl V (S) | ∀i ∈ S : xi ≥ αi}. An NTU game (N, V ) is
superadditive if for all coalitions S, T ∈ N such that S ∩ T = ∅ we have
V (S)∩ V (T ) ⊆ V (S ∪ T ); it is individually superadditive if for all i ∈ N and
for all S ⊆ N \ {i} we have V (S) ∩ V ({i}) ⊆ V (S ∪ {i}).

Equation (2) in Definition 2.2 of convexity for TU games states that for
any coalition U , the marginal contribution of U to a coalition is at least equal
to U ’s contribution to a smaller coalition. The same idea in the NTU setting
is formulated as follows.1

1Note that superadditivity was required in the original definition of Hendrickx, Borm,
and Timmer (2002). In our setting it is implied by coalition merge convexity using As-
sumption (4), S = ∅, and comprehensiveness.
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Definition 2.10. An NTU game (N, V ) is coalition merge convex if it is
monotone and for all U ∈ N and S, T ∈ 2N such that S ( T ⊆ N \ U the
following statement is true: For all x ∈ WP(S) ∩ IR(S), all y ∈ V (T ), and
all z ∈ V (S ∪ U) such that zS ≥ xS, there exists a v ∈ V (T ∪ U) such that
vT ≥ yT and vU ≥ zU .

Let ΓNTU
cmc denote the class of coalition merge convex NTU games with the

player set N .
Equation (3) in Definition 2.2 of convexity for TU games says that for

any player i, the marginal contribution of i to some coalition is at least equal
to i’s contribution to a smaller coalition. The analogous concept in the NTU
setting reads as follows.2

Definition 2.11. An NTU game (N, V ) is individual merge convex if it is
monotone and for all j ∈ N and S, T ∈ 2N such that S ( T ⊆ N \ {j} the
following statement is true: For all x ∈ WP(S) ∩ IR(S), all y ∈ V (T ), and
all z ∈ V (S ∪ {j}) such that zS ≥ xS, there exists a v ∈ V (T ∪ {j}) such
that vT ≥ yT and vj ≥ zj.

Let ΓNTU
imc denote the class of individual merge convex NTU games with

the player set N .
We now define the vector of marginal contributions for an NTU game.

Definition 2.12. Consider an NTU game (N, V ) and a permutation σ ∈ ΣN .
The vector of marginal contributions Mσ(V ) is defined by

Mσ
σ(j)(V ) = sup{yσ(j)|y ∈ V ({σ(1), . . . , σ(j)}),

∀i ∈ {1, . . . , j − 1} : yσ(i) ≥ Mσ
σ(i)(V )}

for all j ∈ {1, . . . , n}.3

Theorem 2.3 suggests the following convexity notion for NTU games.

Definition 2.13. An NTU game (N, V ) is marginal convex if for all σ ∈ ΣN

we have Mσ(V ) ∈ C(V ).

Let ΓNTU
mc denote the class of marginal convex NTU games with the player

set N .
The five notions of NTU convexity are not equivalent in general. Hen-

drickx, Borm, and Timmer (2002) show that ordinal and cardinal convexity

2Note that individual superadditivity was required in the original definition of Hen-
drickx, Borm, and Timmer (2002). In our setting it is implied by individual merge con-
vexity using Assumption (4), S = ∅, and comprehensiveness.

3We use the convention sup(∅) = −∞.
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are not related to each other and to the other three types of convexity. They
also provide the following theorem on the relation of the last three convexity
notions.

Theorem 2.14. If an NTU game (N, V ) is coalition merge convex, then it
is individual merge convex, that is ΓNTU

cmc ⊆ ΓNTU
imc . If an NTU game (N, V )

is individual merge convex, then it is marginal convex, that is ΓNTU
imc ⊆ ΓNTU

mc .

Proof. Since we use a different set of assumptions defining an NTU game,we
provide a new proof.

ΓNTU
cmc ⊆ ΓNTU

imc

This inclusion follows directly from Definitions 2.10 and 2.11.

ΓNTU
imc ⊆ ΓNTU

mc

Assume (N, V ) is individually merge convex and let σ ∈ ΣN be a permu-
tation. We have to show that Mσ(V ) ∈ C(V ). Without loss of generality we
can take the permutation to be the identity. The proof proceeds by induction
on the cardinality of N .

Let Mσ,k(V {1,...,k}) denote the marginal vector in the subgame V {1,...,k}

corresponding to the restriction of σ to the first k positions.
If k = 1, then by definition Mσ,1(V {1}) ∈ C(V {1}).
Let 1 ≤ k < n and assume that Mσ,k(V {1,...,k}) ∈ C(V {1,...,k}).4 We want

to show that Mσ,k+1(V {1,...,k+1}) ∈ C(V {1,...,k+1}). Suppose on the contrary
that Mσ,k+1(V {1,...,k+1}) /∈ C(V {1,...,k+1}). Then there is S ⊆ {1, . . . , k + 1}
and x ∈ V {1,...,k+1}(S) such that xS À (Mσ,k+1(V {1,...,k+1}))S.

From the definition of Mσ,k+1(V {1,...,k+1}) it follows that S 6= {1, . . . , k+1}
and S 6= {k + 1}. Consider some point c ∈ {z ∈ R{1,...,k+1} | zS\{k+1} ≤
(Mσ,k+1(V {1,...,k+1}))S\{k+1} and ∀i ∈ S \ {k +1} : zi ≥ αi}∩ ∂V {1,...,k+1}(S \
{k + 1}), where again for all i ∈ N : αi = sup{zi | z ∈ V ({i})}. From the
induction hypothesis it follows that k+1 ∈ S, moreover (N, V ) is individually
superadditive, therefore the given c exists.

Point c is on the boundary of V {1,...,k+1}(S \ {k + 1}), hence c ∈ WP(S \
{k + 1}). Since ∀i ∈ S \ {k + 1}: ci ≥ αi, c ∈ IR(S \ {k + 1}). Since
cS\{k+1} ≤ (Mσ,k+1(V {1,...,k+1}))S\{k+1}, we have that xS\{k+1} À cS\{k+1}.
Moreover, using individual superadditivity, (Mσ,k(V {1,...,k}), 0) ∈ V {1,...,k+1}

({1, . . . , k}). Since V {1,...,k+1} is individual merge convex, there exists y ∈
V {1,...,k+1}({1, . . . , k + 1}) such that y{1,...,k} ≥ Mσ,k(V {1,...,k}) and yk+1 ≥
xk+1 > Mσ,k+1

k+1 (V {1,...,k+1}), a contradiction to the definition of Mσ,k+1

(V {1,...,k+1}). 2

4Notice that a subgame of an individual merge convex game is individual merge convex.
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To illustrate the subtle differences between the various notions of NTU
convexity, consider the following example of an ordinally convex NTU game
which is neither cardinally, nor marginal, thus by Theorem 2.14 nor individ-
ual merge, nor coalition merge convex.

Example 2.15. (Hendrickx, Borm, and Timmer, 2002, Example 4.1.) Con-
sider the following NTU game with player set N = {1, 2, 3}. Let

V ({i}) = {x ∈ R3 | xi ≤ 0} for all i ∈ N,

V ({1, 2}) = {x ∈ R3 | x1 ≤ 0, x2 ≤ 2},
V ({1, 3}) = {x ∈ R3 | x1 + x3 ≤ 1},
V ({2, 3}) = {x ∈ R3 | x2, x3 ≤ 0},

V (N) = {x ∈ R3 |
∑
i∈N

xi ≤ 2}.

To show that (N, V ) is ordinally convex, let S, T ∈ N and let x ∈ V (S) ∩
V (T ). If S ⊆ T , T ⊆ S or S∩T = ∅, then ordinal convexity is easy to check.
If S = {1, 2} and T = {1, 3}, then x1 ≤ 0 and thus x ∈ V (S∩T ). Otherwise,∑

i∈N xi ≤ 2, thus x ∈ V (S ∪ T ).
Cardinal convexity of (N, V ) fails, since (0, 2, 0) ∈ V ◦({1, 2}) and (0, 0, 1) ∈

V ◦({1, 3}), but (0, 2, 0) + (0, 0, 1) = (0, 2, 1) /∈ V ◦({1}) + V ◦(N).
Marginal convexity of (N, V ) is also not satisfied, since the vector of

marginal contributions corresponding to σ = (1, 2, 3), Mσ(V ) = (0, 2, 0) does
not belong to the core: coalition {1, 3} blocks it. Therefore, by Theorem 2.14,
(N, V ) is neither individual merge, nor coalition merge convex.

We will continue Example 2.15 in Examples 3.3 and 3.5.

3 Exact NTU Games

Theorem 2.4 claims that convex TU games are exact. In this section we
generalize exactness to the NTU setting and analyze the relationship of NTU
exactness and the various notions of NTU convexity.

Definition 3.1. An NTU game (N, V ) is NTU exact if for each S ∈ N there
exists a core allocation x ∈ C(V ) such that x ∈ ∂V (S).

Let ΓNTU
e denote the class of exact NTU games with the player set N .

Every TU game (N, v) with v(S) ≥ 0 for all S ∈ N gives rise to an NTU
game (N, V ) by defining V (S) = {x ∈ RN | x(S) ≤ v(S)} for all S ∈ N .
Note that Assumptions (4)-(9) are satisfied by (N, V ). It is a straightforward
exercise to verify the following theorem.
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Theorem 3.2. A TU game (N, v) is exact if and only if the corresponding
NTU game (N, V ) is NTU exact.

Note that if an NTU game (N, V ) is NTU exact, then each of its subgames
has a core element, since by definition for each S ∈ N there exists a core
allocation x ∈ C(V ) such that x ∈ ∂V (S), and x cannot be blocked in
the subgame (S, V S) either. Thus exact NTU games are a subset of totally
Π-balanced games, ΓNTU

e ⊆ ΓNTU
t−Π−b.

Next, we check whether the NTU game in Example 2.15 is NTU exact.

Example 3.3. (Example 2.15 continued.) The NTU game (N, V ) in Ex-
ample 2.15 is NTU exact, since (0, 0, 2) is a core element on the boundary
of V ({1}), V ({2}), and V ({1, 2}); (2, 0, 0) is a core element on the bound-
ary of V ({2}), V ({3}), and V ({2, 3}); and (1, 1, 0) is a core element on the
boundary of V ({1, 3}).

If for all S ∈ N all core elements of the subgame (S, V S) could be ex-
tended to the core of the original game by an appropriate choice for the
elements outside S, then NTU exactness would follow immediately, since
core elements of (S, V S) are on the boundary of V (S). Example 2.15 shows
that NTU exactness of an ordinally convex NTU game cannot be demon-
strated in this way. The core of the subgame related to coalition {1, 2} is
{x ∈ R2 | x1 = 0, 0 ≤ x2 ≤ 2}. Note that only some elements in this core can
be extended to the core of the original game: {x ∈ R2 | x1 = 0, 0 ≤ x2 ≤ 1},
since if y1 = 0, 1 < y2 ≤ 2, y3 = 2−y2, then coalition {1, 3} blocks allocation
y in the original game.

To analyze the NTU exactness of ordinally convex NTU games we define
the notion of a reduced game for the case where one player leaves the grand
coalition. This notion of reduced game originates from Greenberg (1985),

Definition 3.4. Take any NTU game (N, V ), n ≥ 2, and a player i ∈ N .
Define:

M =N \ {i}, m = n− 1,

αi = sup{xi | x ∈ V ({i})},
W (S) ={x ∈ RM | ∃β > αi such that (x, β) ∈ V (S ∪ {i})}, S ⊆ M.

P (S) =Vp(S)× RM\S, S ⊆ M.

Then, the reduced game (M, U) is given by:

U(S) =





{x ∈ RM | (x, αi) ∈ V (N)} for S = M ,

∅ for S = ∅,
W (S) ∪ P (S) otherwise.
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The definition of the reduced game is illustrated in the following example.5

Example 3.5. (Example 2.15 continued.) If player 3 leaves the grand
coalition in Example 2.15, then the derived reduced game looks as follows.
U({1, 2}) = {x ∈ R2 | x1 + x2 ≤ 2}, U(∅) = ∅. Moreover, W ({1}) =
{x ∈ R2 | x1 < 1}, W ({2}) = ∅, P ({1}) = {x ∈ R2 | x1 ≤ 0} and
P ({2}) = {x ∈ R2 | x2 ≤ 0} imply that U({1}) = {x ∈ R2 | x1 < 1}
and U({2}) = {x ∈ R2 | x2 ≤ 0}.

Note that the reduced game is not zero normalized and U({1}) is open.
Moreover, all the core elements of the reduced game {x ∈ R2 | x1 + x2 =
2, 1 ≤ x1 ≤ 2, 0 ≤ x2 ≤ 1} can be extended to a core element of the original
game by setting x3 = α3 = 0.

In general, a reduced game is not always an NTU game. However, Green-
berg (1985) shows the following lemma about reduced games of ordinally
convex NTU games.

Lemma 3.6. (Greenberg, 1985) Consider an ordinally convex NTU game
(N, V ). Then the reduced game (M,U) is an ordinally convex NTU game.

In his proof Greenberg (1985) considers the setting when V (S) ⊆ RN
+

instead of V (S) ⊆ RN , for all S ∈ N , but due to Assumptions (6) and (8)
all the arguments can be carried over to our setting.

We show the following theorem.

Theorem 3.7. If an NTU game (N, V ) is ordinally convex, then it is NTU
exact, ΓNTU

oc ⊆ ΓNTU
e .

Proof. The proof proceeds by induction on the cardinality of N .
Let n = 1. If an NTU game (N, V ) is ordinally convex, then it is NTU

exact, since max{x | x ∈ V (N)} is well defined, is on the boundary of V (N)
and belongs to the core.

Assume that the theorem holds for any game with less than n players.
We will show that it also holds for n players.

Let (N, V ) be an ordinally convex NTU game with n ≥ 2 players. Con-
sider some coalition S ⊆ N. We show that there exists y ∈ C(V ) such that
y ∈ ∂V (S) and thereby prove that (N, V ) is NTU exact.

Let i ∈ S be arbitrarily chosen and let M = N \ {i}. Lemma 3.6 and
the induction hypothesis imply that the reduced game (M, U) is NTU exact.

5One can verify that Lemma 3.6 and Theorem 3.7 remain valid by using W (S) = {x ∈
RM | ∃β such that ∀y ∈ V ({i}) : β > yi, and (x, β) ∈ V (S ∪ {i})}. This shows that it is
really the blocking possibility by the leaving player that matters in the definition of the
reduced game.
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Then let x ∈ C(U) be such that x ∈ ∂U(S \{i}) if S 6= {i}, and let x ∈ C(U)
be arbitrary chosen otherwise. Moreover, let y ∈ RN be defined by yM = x
and y{i} = αi. Then, in Step I we show that y ∈ C(V ), in Step II we establish
that y ∈ ∂V (S).

Step I, y ∈ C(V )
Since x ∈ C(U) by definition x ∈ U(M), that is y ∈ V (N). First, we

show that y cannot be blocked by any coalition T ( N . Suppose to the
contrary that there exist β > αi, z À x and T ( N such that (z, β) ∈ V (T ).
We consider two cases: T = M or T 6= M .

Case 1: T = M . Then (z, β) ∈ V (M) and by comprehensiveness for all
ε > 0 we have that (z, αi − ε) ∈ V (M). Also, for all ε > 0 we have that
(z, αi − ε) ∈ V ({i}) by the definition of αi. Ordinal convexity implies that
V (M) ∩ V ({i}) ⊆ V (N), thus for all ε > 0 we have that (z, αi − ε) ∈ V (N).
Since V (N) is closed, (z, αi) ∈ V (N), implying that z ∈ U(M), contradicting
x ∈ C(U).

Case 2: T 6= M . If i /∈ T , then z ∈ P (T ) and hence T would block x in
(M, U), contradicting x ∈ C(U). If i ∈ T , then T \ {i} 6= ∅, since β > αi

implies (z, β) /∈ V ({i}). Therefore, z ∈ W (T \ {i}), again contradicting
x ∈ C(U).

Next, we show that y cannot be blocked by N either. Otherwise there
exist β > αi, z À x such that (z, β) ∈ V (N). It follows using comprehensive-
ness that (z, αi) ∈ V (N), implying that (z, αi) ∈ U(M), again contradicting
x ∈ C(U). Thus y ∈ C(V ).

Note that the construction used shows that all core elements of the reduced
game can be extended to core elements of the original game.

Step II. y ∈ ∂V (S)
Recall that i is a member of S. If S = {i}, then y ∈ ∂V ({i}) by the

definition of αi. If S = N , then y ∈ C(V ) by Step I, which implies that
y ∈ ∂V (N).

If S 6= {i} and S 6= N , then U(S \ {i}) = W (S \ {i}) ∪ P (S \ {i}) and
x ∈ ∂U(S \ {i}). So

x ∈ ∂(W (S \ {i}) ∪ P (S \ {i}))
= cl (W (S \ {i}) ∪ P (S \ {i})) ∩ cl (RM \ (W (S \ {i}) ∪ P (S \ {i})))
= (cl W (S \ {i}) ∪ cl P (S \ {i})) ∩ cl (RM \ (W (S \ {i}) ∪ P (S \ {i})))
= (∂W (S \ {i}) \ int P (S \ {i})) ∪ (∂P (S \ {i}) \ int W (S \ {i})),

which implies that there are two (not exclusive) cases:
x ∈ ∂W (S \ {i}) \ int P (S \ {i}) or x ∈ ∂P (S \ {i}) \ int W (S \ {i}).

12



Case 1: x ∈ ∂W (S \ {i}) \ int P (S \ {i}). Then, x ∈ ∂W (S \ {i}) implies
x ∈ cl W (S\{i})∩cl (RM \W (S\{i})). Since x ∈ cl W (S\{i}), there exists
a sequence (xk)k∈N with xk ∈ W (S \ {i}) for all k ∈ N and (xk)k∈N → x.
Then, by the definition of W (S \ {i}), there exists a sequence (βk)k∈N with
βk > αi and (xk, βk) ∈ V (S) for all k ∈ N. Due to comprehensiveness
(xk, αi) ∈ V (S) for all k ∈ N as well, and the sequence (xk, αi)k∈N converges
to (x, αi), implying that (x, αi) ∈ cl V (S). Since x ∈ cl (RM \W (S \{i})) as
well, there exists a sequence (xk)k∈N with xk ∈ RM \W (S \ {i}) for all k ∈ N
and (xk)k∈N → x, that is for all β > αi we have that (xk, β) ∈ RN \ V (S) for
all k ∈ N. In particular, (xk, αi + 1/(k + 1)) ∈ RN \ V (S) for all k ∈ N, and
(xk, αi + 1/(k + 1))k∈N → (x, αi), implying that (x, αi) ∈ cl (RN \ V (S)). So
(x, αi) ∈ cl V (S) ∩ cl (RN \ V (S)), thus y ∈ ∂V (S).

Case 2: x ∈ ∂P (S\{i})\int W (S\{i}). By ordinal convexity of (N, V ) we
have V (S\{i})∩V ({i}) ⊆ V (S), which together with x ∈ ∂P (S\{i}) implies
that there exists a sequence (xk, αk

i )k∈N with (xk, αk
i ) ∈ V (S) for all k ∈ N and

(xk, αk
i )k∈N → (x, αi), so (x, αi) ∈ cl V (S). Since x /∈ int W (S \ {i}), for all

z À x and for all β > αi we have (z, β) /∈ V (S). Thus there exists a sequence
(xk, αi + 1/(k + 1))k∈N → (x, αi) such that (xk, αi + 1/(k + 1)) ∈ RN \ V (S),
implying that (x, αi) ∈ cl (RN \V (S)). So (x, αi) ∈ cl V (S)∩cl (RN \V (S)),
thus y ∈ ∂V (S). 2

Next, we provide an example of a cardinally convex game which is not
NTU exact.

Example 3.8. (A cardinally convex game which is not NTU exact). Con-
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sider the following NTU game with player set N = {1, 2, 3, 4}. Let

V ({i}) = {x ∈ R4 | xi ≤ 0}, i ∈ N,

V ({1, 2}) = {x ∈ R4 | x1 + x2 ≤ 2},
V ({1, 3}) = {x ∈ R4 | x1, x3 ≤ 0},
V ({1, 4}) = {x ∈ R4 | x1, x4 ≤ 0},
V ({2, 3}) = {x ∈ R4 | x2, x3 ≤ 0},
V ({2, 4}) = {x ∈ R4 | x2, x4 ≤ 0},
V ({3, 4}) = {x ∈ R4 | x3, x4 ≤ 0},

V ({1, 2, 3}) = {x ∈ R4 | x1 + x2 + x3 ≤ 4},
V ({1, 2, 4}) = {x ∈ R4 | x1 + x2 + x4 ≤ 4},
V ({1, 3, 4}) = {x ∈ R4 | x1, x3, x4 ≤ 0},
V ({2, 3, 4}) = {x ∈ R4 | x2, x3, x4 ≤ 0},

V (N) = {x ∈ R4 | x1 + x2 + x3 ≤ 4, x4 ≤ 0}
∪ {x ∈ R4| x1 + x2 + x4 ≤ 4, x3 ≤ 0}
∪ {x ∈ R4| x1 + x2 + x3 + x4 ≤ 6, x1 ≤ −1}.

The game (N, V ) above is cardinally convex, since
(i) V ◦({1, 2, 3}) + V ◦({1, 2, 4}) ⊆ V ◦({1, 2}) + V ◦(N) using the third set in
the definition of V (N). Notice that to do so we make use of the fact that
for x ∈ V ◦(N), x1 and x2 can be chosen negatively in order to increase the
values of x3 and x4.
(ii) For all other S, T ∈ N it is easy to verify that V ◦(S)+V ◦(T ) ⊆ V ◦(S∪T ).

However, (N, V ) is not NTU exact, since there is no core allocation on
the boundary of V ({1, 2}). To see that, assume that there is an allocation
x ∈ C(V ) such that x ∈ ∂V ({1, 2}). Since x ∈ ∂V ({1, 2}), we have that
x1 + x2 = 2. To have a core allocation, x3 ≥ 2 should hold to prevent
blocking by coalition {1, 2, 3} and x4 ≥ 2 should hold to prevent blocking
by coalition {1, 2, 4}). Thus x should be in the third set in the definition of
V (N), requiring that x1 ≤ −1, which would be blocked by player 1.

By Theorem 2.14, to verify whether the marginalistic interpretations of
NTU convexity imply NTU exactness, it is enough to analyze marginal con-
vexity.

Theorem 3.9. If an NTU game (N, V ) is marginal convex, then it is NTU
exact, that is ΓNTU

mc ⊆ ΓNTU
e .

Proof. Consider a marginal convex NTU game (N, V ), and a coalition
S ∈ N . For exactness we have to show that there is a core element on the
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boundary of V (S). Let σ̄ be a permutation such that S ∈ {σ̄(1), {σ̄(1), σ̄(2)},
{σ̄(1), σ̄(2), σ̄(3)}, . . . , N}. Since (N, V ) is marginal convex, we have that
M σ̄(V ) ∈ C(V ). By definition, M σ̄(V ) is on the boundary of V (T ) for all
T ∈ {σ̄(1), {σ̄(1), σ̄(2)}, {σ̄(1), σ̄(2), σ̄(3)}, . . . , N}, thus it is a core element
on the boundary of V (S) as well. 2

Using Theorems 2.14 and 3.9 we have the following corollary.

Corollary 3.10. Each of coalition merge convexity, individual merge con-
vexity and marginal convexity implies exactness in the NTU setting, that is
ΓNTU

cmc ⊆ ΓNTU
imc ⊆ ΓNTU

mc ⊆ ΓNTU
e .

4 Conclusion

In this paper we have generalized exactness to games with non-transferable
utility to get the class of NTU exact games (ΓNTU

e ). In a game which is
NTU exact for each coalition there is a core allocation on the boundary of its
payoff set, meaning that this coalition does not necessarily benefit from the
gains of forming the grand coalition in an allocation which is robust against
all coalitional deviations. We have noted that NTU exact games are a subset
of totally Π-balanced NTU games (ΓNTU

t−Π−b), having a non-empty core in each
of their subgames.

We have shown that the classes of ordinally convex (ΓNTU
oc ), coalition

merge convex (ΓNTU
cmc ), individual merge convex (ΓNTU

imc ), and marginal convex
(ΓNTU

mc ) NTU games are a subset of NTU exact games. Moreover, we have
given an example of a cardinally convex game (ΓNTU

cc ) which is not NTU
exact.

Hendrickx, Borm, and Timmer (2002) show that the aforementioned five
classes of NTU convex games do not coincide for more than three players.
The only general result (Theorem 2.14) is that coalition merge convexity
implies individual merge convexity (ΓNTU

cmc ⊆ ΓNTU
imc ), and individual merge

convexity implies marginal convexity (ΓNTU
imc ⊆ ΓNTU

mc ).
Theorem 2.6 claims that the class of convex TU games coincides with the

class of totally exact TU games. In the NTU setting we do not have such
a theorem. Let ΓNTU

te denote the class of totally exact NTU games with the
player set N , being NTU exact in all of their subgames. Since an ordinally
convex game is exact, and all subgames of an ordinally convex game are
ordinally convex, we have that ΓNTU

oc ⊆ ΓNTU
te . For marginal convex games a

similar argument leads to ΓNTU
mc ⊆ ΓNTU

te .
However, using our results it is easy to provide counterexamples where

NTU total exactness implies none of the NTU convexity notions. For in-
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stance, the NTU game in Example 2.15 is ordinally convex, and as we ar-
gued that game is totally NTU exact. But it is neither cardinal, nor marginal,
nor individual merge, nor coalition merge convex. So neither cardinal, nor
marginal, nor individual merge, nor coalition merge convexity is implied by
total NTU exactness in general. Hendrickx, Borm, and Timmer (2000) pro-
vide an example (Example 4.6 there) for an NTU game which is marginal
convex but not ordinally convex. That example can be used to show that
total NTU exactness does not imply ordinal convexity either.

We summarize the relationships between the various classes of NTU
games for more than three players in Figure 1.

1

Γ
NTU
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Γ
NTU
cmc

Γ
NTU

imc

Γ
NTU
mc

Γ
NTU
te

Γ
NTU
e

Γ
NTU
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Γ
NTU

Π−b

Γ
NTU
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Figure 1: Subsets of Π-balanced games.
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