241 research outputs found

    Thrombomodulin Ala455Val Polymorphism and the risk of cerebral infarction in a biracial population: the Stroke Prevention in Young Women Study

    Get PDF
    BACKGROUND: The genes encoding proteins in the thrombomodulin-protein C pathway are promising candidate genes for stroke susceptibility because of their importance in thrombosis regulation and inflammatory response. Several published studies have shown that the Ala455Val thrombomodulin polymorphism is associated with ischemic heart disease, but none has examined the association with stroke. Using data from the Stroke Prevention in Young Women Study, we sought to determine the association between the Ala455Val thrombomodulin polymorphism and the occurrence of ischemic stroke in young women. METHODS: All 59 hospitals in the greater Baltimore-Washington area participated in a population-based case-control study of stroke in young women. We compared 141 cases of first ischemic stroke (44% black) among women 15 to 44 years of age with 210 control subjects (35% black) who were identified by random digit dialing and frequency matched to the cases by age and geographical region of residence. Data on historical risk factors were collected by standardized interview. Genotyping of the thrombomodulin Ala455Val polymorphism was performed by pyrosequencing. RESULTS: The A allele (frequency = 0.85) was associated with stroke under the recessive model. After adjustment for age, race, cigarette smoking, hypertension, and diabetes, the AA genotype, compared with the AV and VV genotypes combined, was significantly associated with stroke (odds ratio 1.9, 95% CI 1.1–3.3). The AA genotype was more common among black than white control subjects (81% versus 68%) but there was no significant interaction between the risk genotype and race (adjusted odds ratio 2.7 for blacks and 1.6 for whites). A secondary analysis removing all probable (n = 16) and possible (n = 15) cardioembolic strokes demonstrated an increased association (odds ratio 2.2, 95% CI 1.2–4.2). CONCLUSIONS: Among women aged 15 to 44 years, the AA genotype is more prevalent among blacks than whites and is associated with increased risk of early onset ischemic stroke. Removing strokes potentially related to cardioembolic phenomena increased this association. Further studies are needed to determine whether this polymorphism is functionally related to thrombomodulin expression or whether the association is due to population stratification or linkage to a nearby functional polymorphism

    Cooperative Regulation of the Activity of Factor Xa within Prothrombinase by Discrete Amino Acid Regions from Factor Va Heavy Chain†

    Get PDF
    ABSTRACT: The prothrombinase complex catalyzes the activation of prothrombin to R-thrombin. We have repetitively shown that amino acid region 695DYDY698 from the COOH terminus of the heavy chain of factor Va regulates the rate of cleavage of prothrombin at Arg271 by prothrombinase. We have also recently demonstrated that amino acid region 334DY335 is required for the optimal activity of prothrombinase. To assess the effect of these six amino acid residues on cofactor activity, we created recombinant factor Va molecules combining mutations at amino acid regions 334–335 an

    First RNA-seq approach to study fruit set and parthenocarpy in zucchini (Cucurbita pepo L.)

    Full text link
    [EN] Background: Zucchini fruit set can be limited due to unfavourable environmental conditions in off-seasons crops that caused ineffective pollination/fertilization. Parthenocarpy, the natural or artificial fruit development without fertilization, has been recognized as an important trait to avoid this problem, and is related to auxin signalling. Nevertheless, differences found in transcriptome analysis during early fruit development of zucchini suggest that other complementary pathways could regulate fruit formation in parthenocarpic cultivars of this species. The development of next-generation sequencing technologies (NGS) as RNA-sequencing (RNA-seq) opens a new horizon for mapping and quantifying transcriptome to understand the molecular basis of pathways that could regulate parthenocarpy in this species. The aim of the current study was to analyze fruit transcriptome of two cultivars of zucchini, a non-parthenocarpic cultivar and a parthenocarpic cultivar, in an attempt to identify key genes involved in parthenocarpy. Results: RNA-seq analysis of six libraries (unpollinated, pollinated and auxin treated fruit in a non-parthenocarpic and parthenocarpic cultivar) was performed mapping to a new version of C. pepo transcriptome, with a mean of 92% success rate of mapping. In the non-parthenocarpic cultivar, 6479 and 2186 genes were differentially expressed (DEGs) in pollinated fruit and auxin treated fruit, respectively. In the parthenocarpic cultivar, 10,497 in pollinated fruit and 5718 in auxin treated fruit. A comparison between transcriptome of the unpollinated fruit for each cultivar has been performed determining that 6120 genes were differentially expressed. Annotation analysis of these DEGs revealed that cell cycle, regulation of transcription, carbohydrate metabolism and coordination between auxin, ethylene and gibberellin were enriched biological processes during pollinated and parthenocarpic fruit set. Conclusion: This analysis revealed the important role of hormones during fruit set, establishing the activating role of auxins and gibberellins against the inhibitory role of ethylene and different candidate genes that could be useful as markers for parthenocarpic selection in the current breeding programs of zucchini.Research worked is supported by the project RTA2014-00078 from the Spanish Institute of Agronomy Research INIA (Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria) and also PP.AVA.AVA201601.7, FEDER y FSE (Programa Operativo FSE de Andalucia 2007-2013 "Andalucia se mueve con Europa"). TPV is supported by a FPI scholarship from RTA2011-00044-C02-01/02 project of INIA. The funding agencies were not involved in the design of the study, collection, analysis, and interpretation of data and in writing the manuscript.Pomares-Viciana, T.; Del Rio-Celestino, M.; Roman, B.; Die, J.; Picó Sirvent, MB.; Gómez, P. (2019). First RNA-seq approach to study fruit set and parthenocarpy in zucchini (Cucurbita pepo L.). BMC Plant Biology. 19:1-20. https://doi.org/10.1186/s12870-019-1632-2S12019Varga A, Bruinsma J. Tomato. In: Monselise SP, editor. CRC Handbook of Fruit Set and Development. Boca Raton: CRC Press; 1986. p. 461–80.Nepi M, Cresti L, Guarnieri M, Pacini E. Effect of relative humidity on water content, viability and carbohydrate profile of Petunia hybrid and Cucurbita pepo pollen. Plant Syst Evol. 2010;284:57–64.Gustafson FG. Parthenocarpy: natural and artificial. Bot Rev. 1942;8:599–654.Robinson RW, Reiners S. Parthenocarpy in summer squash. Hortscience. 1999;34:715–7.Pomares-Viciana T, Die J, Del Río-Celestino M, Román B, Gómez P. Auxin signalling regulation during induced and parthenocarpic fruit set in zucchini. Mol Breeding. 2017;37:56.Ozga JA, Reinecke DM. Hormonal interactions in fruit development. J Plant Growth Regul. 2003;22:73–81.Kim IS, Okubo H, Fujieda K. Endogenous levels of IAA in relation to parthenocarpy in cucumber (Cucumis sativus L). Sci Hortic. 1992;52:1–8.Olimpieri I, Siligato F, Caccia R, Mariotti L, Ceccarelli N, Soressi GP, et al. Tomato fruit set driven by pollination or by the parthenocarpic fruit allele are mediated by transcriptionally regulated gibberellin biosynthesis. Planta. 2007;226:877–88.Cui L, Zhang T, Li J, Lou Q, Chen J. Cloning and expression analysis of Cs-TIR1/AFB2: the fruit development-related genes of cucumber (Cucumis sativus L.). Acta Physiol Plant. 2014;36:139–49.De Jong M, Wolters-Arts J, Feron R, Mariani C, Vriezen WH. The Solanum lycopersicum auxin response factor 7 (SlARF7) regulates auxin signalling during tomato fruit set and development. Plant J. 2009;57:160–70.Wang H, Jones B, Li Z, Frasse P, Delalande C, Regad F, Chaabouni S, Latché A, Pech JC, Bouzayen M. The tomato aux/IAA transcription factor IAA9 is involved in fruit development and leaf morphogenesis. Plant Cell. 2005;17(10):2676–92.Goetz M, Vivian-Smith A, Johnson SD, Koltunow AM. AUXIN RESPONSE FACTOR 8 is a negative regulator of fruit initiation in Arabidopsis. Plant Cell. 2006;18(8):1873–86.Mazzucato A, Cellini F, Bouzayen M, Zouine M, Mila I, Minoia S et al. A TILLING allele of the tomato aux/IAA9 gene offers new insights into fruit set mechanisms and perspectives for breeding seedless tomatoes. Mol Breeding. 2015; 35(22):1-15.Blanca J, Cañizares J, Roig C, Ziarsolo P, Nuez F, Picó B. Transcriptome characterization and high throughput SSRs and SNPs discovery in Cucurbita pepo (Cucurbitaceae). BMC Genomics. 2011;12:104.Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet. 2009;10(1):57–63.Da Fonseca RR, Albrechtsen A, Themudo GE, Ramos-Madrigal J, Sibbesen JA, Maretty L, et al. Next-generation biology: sequencing and data analysis approaches for non-model organisms. Mar Genomics. 2016;30:3–13.Conesa A, Madrigal P, Tarazona S, Gomez-Cabrero D, Cervera A, McPherson A, et al. A survey of best practices for RNA-seq data analysis. Genome Biol. 2016;17:13.Li J, Cui ZWJ, Zhang T, Guo Q, Xu J, Li J, et al. Transcriptome comparison of global distinctive features between pollination and parthenocarpic fruit set reveals transcriptional phytohormone cross-talk in cucumber (Cucumis sativus L). Plant Cell Physiol. 2014;55(7):1325–42.Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics. 2012;28(23):3150–2.Montero-Pau J, Blanca J, Bombarely A, Ziarsolo P, Esteras C, Martí-Gómez C, et al. De novo assembly of the zucchini genome reveals a whole genome duplication associated with the origin of the Cucurbita genus. Plant Biotechnol J. 2017. https://doi.org/10.1111/pbi.12860 .Vriezen WH, Feron R, Maretto F, Keijman J, Mariani C. Changes in tomato ovary transcriptome demonstrate complex hormonal regulation of fruit set. New Phytol. 2008;177:60–76.Tang N, Deng W, Hu G, Hu N, Li Z. Transcriptome profiling reveals the regulatory mechanism underlying pollination dependent and parthenocarpic fruit set mainly mediated by auxin and gibberellin. PLoS One. 2015;10(4):e0125355.Li J, Yan S, Yang W, Li Y, Xia M, Chen Z, et al. Transcriptomic analysis reveals the roles of microtubule-related genes and transcription factors in fruit length regulation in cucumber (Cucumis sativus L.). Sci Rep. 2015;26(5):8031.Mironov V, De Veylder L, Van Montagu M, Inze D. Cyclin-dependent kinases and cell division in plants- the nexus. Plant Cell. 1999;11(4):509–22.Perrot-Rechenmann C. Cellular responses to auxin: division versus expansion. Cold Spring Harb Perspect Biol. 2010;2(5):a001446.De Veylder L, Beeckman T, Beemster GT, Krols L, Terras F, Landrieu I, et al. Functional analysis of cyclin-dependent kinase inhibitors of Arabidopsis. Plant Cell. 2001;13:1653–68.Nieuwland J, Menges M, Murray JAH. The plant cyclins. In: Inze D, editor. Cell cycle control and plant development, vol. 2007. Oxford: Wiley-Blackwell Publishing; 2007. p. 33–61.Menges M, Samland AK, Planchais S, Murray JA. The D-type cyclin CYCD3;1 is limiting for the G1-to-S-phasetransition in Arabidopsis. Plant Cell. 2006;18:893–906.Boruc J, Mylle E, Duda M, De Clercq R, Rombauts S, Geelen D, et al. Systematic localization of the Arabidopsis core cell cycle proteins reveals novel cell division complexes. Plant Physiol. 2010;152(2):553–65.Sampedro J, Cosgrove DJ. The expansin superfamily. Genome Biol. 2005;6:242.Esmon CA, Tinsley AG, Ljung K, Sandberg G, Hearne LB, Liscum E. A gradient of auxin and auxin-dependent transcription precedes tropic growth responses. Proc Natl Acad Sci. 2006;103:236–41.De Folter S, Busscher J, Colombo L, Losa A, Angenent GC. Transcript profiling of transcription factors genes during siliques development in Arabidopsis. Plant Mol Bio. 2004;56:351–3662004.Son O, Cho HY, Kim MR, Lee H, Lee MS, Song E, et al. Induction of a homeodomain-leucine zipper gene by auxin is inhibited by cytokinin in Arabidopsis roots. Biochem Biophys Res Commun. 2005;326(1):203–9.Olsson ASB, Engstroem P, Seoderman E. The homeobox genes ATHB12 and ATHB7 encode potential regulators of growth in response to water deficit in Arabidopsis. Plant Mol Biol. 2004;55:663–77.Merrow SB, Hopp RJ. Storage effects on winter squashes. Associations between the sugar and starch content of and the degree of preference for winter squashes. J Agric Food Chem. 1961;9:321–6.Berg JM, Tymoczko JL, Stryer L. Carbohydrates. In: Freeman WH, editor. Biochemistry. 5th ed. New York: W H Freeman; 2002.Prabhakar V, Löttgert T, Gigolashvili T, Bell K, Flügge UI, Häusler RE. Molecular and functional characterization of the plastid-localized phosphoenolpyruvate enolase (ENO1) from Arabidopsis thaliana. FEBS Lett. 2009;583(6):983–91.Rius SP, Casati P, Iglesias AA, Gomez-Casati DF. Characterization of Arabidopsis lines deficient in GAPC-1, a cytosolic NAD-dependent glyceraldehyde-3-phosphate dehydrogenase. Plant Physiol. 2008;148(3):1655–67.Van der Linde K, Gutsche N, Leffers HM, Lindermayr C, Müller B, Holtgrefe S, et al. Regulation of plant cytosolic aldolase functions by redox-modifications. Plant Physiol Biochem. 2011;49(9):946–57.Lim H, Cho MH, Jeon JS, Bhoo SH, Kwon YK, Hahn TR. Altered expression of pyrophosphate: fructose-6-phosphate 1-phosphotransferase affects the growth of transgenic Arabidopsis plants. Mol Cells. 2009;27(6):641–9.Baud S, Wuillème S, Dubreucq B, De Almeida A, Vuagnat C, Lepiniec L, et al. Function of plastidial pyruvate kinases in seeds of Arabidopsis thaliana. Plant J. 2007;52:405–19.De Jong M, Mariani C, Vriezen WH. The role of auxin and gibberellin in tomato fruit set. J Exp Bot. 2009;60(5):1523–32.Martínez C, Manzano S, Megías Z, Garrido D, Picó B, Jamilena M. Involvement of ethylene biosynthesis and signalling in fruit set and early fruit development in zucchini squash (Cucurbita pepo L.). BMC Plant Biol. 2013;13:139.Serrani JC, Fos M, Atarés A, Garcia-martinez JL. Effect of gibberellin and auxin on parthenocarpic fruit growth induction in the cv. micro-tom of tomato. J Plant Growth Regul. 2007;26:211–21.Mapelli S. Changes in cytokinin in the fruits of parthenocarpic and normal tomatoes. Plant Sci Lett. 1981;22:227–33.Ulmasov T, Hagen G, Guilfoyle TJ. Activation and repression of transcription by auxin-response factors. Proc Natl Acad Sci U S A. 1999;96:5844–9.Ulmasov T, Hagen G, Guilfoyle TJ. Dimerization and DNA binding of auxin response factors. Plant J. 1999;19:309–19.Tiwari SB, Hagen G, Guilfoyle TJ. Aux/IAA proteins contain a potent transcriptional repression domain. Plant Cell. 2004;16:533–43.Switzenberg JA, Beaudry RM, Grumet R. Effect of CRC:: etr1-1 transgene expression on ethylene production, sex expression, fruit set and fruit ripening in transgenic melon (Cucumis melo L.). Transgenic Res. 2015;24(3):497-507.Nitsch LM, Oplaat C, Feron R, Ma Q, Wolters-Arts M, Hedden P, et al. Abscisic acid levels in tomato ovaries are regulated by LeNCED1 and SlCYP707A1. Planta. 2009;229(6):1335–46.Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and quantifying mammalian transcriptomes by RNA-seq. Nat Methods. 2008;5(7):621–8.Robinson MD, McCarthy DJ, Smyth GK. Edger: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2008;26(1):139–40.Raza K, Mishra A. A novel anticlustering filtering algorithm for the prediction of genes as a drug target. Am J Bio Engi. 2012;2(5):206–11.Van Iterson M, Boer JM, Menezes RX. Filtering, FDR and power. BMCBioinformatics. 2010;11:450.Conesa A, Götz S, Garcia-Gomez JM, Terol J, Talon M, Robles M. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics. 2005;21:3674–6.Berardini TZ, Reiser L, Li D, Mezheritsky Y, Muller R, Strait E, Huala E. The Arabidopsis information resource: making and mining the “gold standard” annotated reference plant genome. Genesis. 2015. https://doi.org/10.1002/dvg.22877 .Bairoch A, Apweiler R. The SWISS-PROT protein sequence database and its supplement TrEMBL. Nucleic Acids Res. 2000;28(1):45–8.Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, McGinnis S, Madden TL. NCBI BLAST: a better web interface. Nucleic Acids Res. 2008;36:W5–9.Wyatt LE, Strickler SR, Mueller LA, Mazourek M. An acorn squash (Cucurbita pepo ssp. ovifera) fruit and seed transcriptome as a resource for the study of fruit traits in Cucurbita. Hortic Res. 2015;2:14070. https://doi.org/10.1038/hortres.2014.70 .Zhang A, Ren GA, Sun YA, Guo H, Zhang SA, Zhang FA, et al. A high-density genetic map for anchoring genome sequences and identifying QTLs associated with dwarf vine in pumpkin (Cucurbita maxima Duch.). BMC Genomics. 2015;16:1101.Finn RD, Attwood TK, Babbit AB, Bork P, Bridge AJ, Chang HY. InterPro in 2017-beyond protein family and domain annotations. Nucleic Acids Res. https://doi.org/10.1093/nar/gkw1107 .Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Sherlock G. Gene ontology: tool for the unification of biology. Nat Genet. 2000;25(1):25–9.Kanehisa M, Araki M, Goto S, et al. KEGG for linking genomes to life and the environment. Nucleic Acids Res. 2008;36:480–4

    Structure-Based Predictive Models for Allosteric Hot Spots

    Get PDF
    In allostery, a binding event at one site in a protein modulates the behavior of a distant site. Identifying residues that relay the signal between sites remains a challenge. We have developed predictive models using support-vector machines, a widely used machine-learning method. The training data set consisted of residues classified as either hotspots or non-hotspots based on experimental characterization of point mutations from a diverse set of allosteric proteins. Each residue had an associated set of calculated features. Two sets of features were used, one consisting of dynamical, structural, network, and informatic measures, and another of structural measures defined by Daily and Gray [1]. The resulting models performed well on an independent data set consisting of hotspots and non-hotspots from five allosteric proteins. For the independent data set, our top 10 models using Feature Set 1 recalled 68–81% of known hotspots, and among total hotspot predictions, 58–67% were actual hotspots. Hence, these models have precision P = 58–67% and recall R = 68–81%. The corresponding models for Feature Set 2 had P = 55–59% and R = 81–92%. We combined the features from each set that produced models with optimal predictive performance. The top 10 models using this hybrid feature set had R = 73–81% and P = 64–71%, the best overall performance of any of the sets of models. Our methods identified hotspots in structural regions of known allosteric significance. Moreover, our predicted hotspots form a network of contiguous residues in the interior of the structures, in agreement with previous work. In conclusion, we have developed models that discriminate between known allosteric hotspots and non-hotspots with high accuracy and sensitivity. Moreover, the pattern of predicted hotspots corresponds to known functional motifs implicated in allostery, and is consistent with previous work describing sparse networks of allosterically important residues

    Evidence of Disseminated Intravascular Coagulation in a Hemorrhagic Fever with Renal Syndrome—Scoring Models and Severe Illness

    Get PDF
    Background: Viral hemorrhagic fevers (VHF) are considered to be a serious threat to public health worldwide with up to 100 million cases annually. The general hypothesis is that disseminated intravascular coagulation (DIC) is an important part of the pathogenesis. The study objectives were to study the variability of DIC in consecutive patients with acute hemorrhagic fever with renal syndrome (HFRS), and to evaluate if different established DIC-scores can be used as a prognostic marker for a more severe illness. Method and Findings: In a prospective study 2006–2008, data from 106 patients with confirmed HFRS were analyzed and scored for the presence of DIC according to six different templates based on criteria from the International Society on Thrombosis and Haemostasis (ISTH). The DIC-scoring templates with a fibrinogen/CRP-ratio were most predictive, with predictions for moderate/severe illness (p,0.01) and bleeding of moderate/major importance (p,0.05). With these templates, 18.9–28.3 % of the patients were diagnosed with DIC. Conclusions: DIC was found in about one fourth of the patients and correlated with a more severe disease. This supports that DIC is an important part of the pathogenesis in HFRS. ISTH-scores including fibrinogen/CRP-ratio outperform models without. The high negative predictive value could be a valuable tool for the clinician. We also believe that our findings coul

    Human malarial disease: a consequence of inflammatory cytokine release

    Get PDF
    Malaria causes an acute systemic human disease that bears many similarities, both clinically and mechanistically, to those caused by bacteria, rickettsia, and viruses. Over the past few decades, a literature has emerged that argues for most of the pathology seen in all of these infectious diseases being explained by activation of the inflammatory system, with the balance between the pro and anti-inflammatory cytokines being tipped towards the onset of systemic inflammation. Although not often expressed in energy terms, there is, when reduced to biochemical essentials, wide agreement that infection with falciparum malaria is often fatal because mitochondria are unable to generate enough ATP to maintain normal cellular function. Most, however, would contend that this largely occurs because sequestered parasitized red cells prevent sufficient oxygen getting to where it is needed. This review considers the evidence that an equally or more important way ATP deficency arises in malaria, as well as these other infectious diseases, is an inability of mitochondria, through the effects of inflammatory cytokines on their function, to utilise available oxygen. This activity of these cytokines, plus their capacity to control the pathways through which oxygen supply to mitochondria are restricted (particularly through directing sequestration and driving anaemia), combine to make falciparum malaria primarily an inflammatory cytokine-driven disease

    Differential expression of immunologic proteins in gingiva after socket preservation in mini pigs

    Get PDF
    During healing following tooth extraction, inflammation and the immune response within the extraction socket are related to bone resorption. Objective : We sought to identify how the alloplastic material used for socket preservation affects the immune responses and osteoclastic activity within extraction sockets. Material and Methods : Using a porcine model, we extracted teeth and grafted biphasic calcium phosphate into the extraction sockets. We then performed a peptide analysis with samples of gingival tissue from adjacent to the sockets and compared the extraction only (EO) and extraction with socket preservation (SP) groups. We also used real-time polymerase chain reaction (PCR) to evaluate the expression level of immunoglobulins, chemokines and other factors related to osteoclastogenesis. Differences between the groups were analyzed for statistical significance using paired t tests. Results : Levels of IgM, IgG and IGL expression were higher in the EO group than in the SP group 1 week post-extraction, as were the levels of CCL3, CCL5, CXCL2, IFN-γ and TNF-α expression (p<0.05). In addition, receptor activator of nuclear factor kappa-B ligand (RANKL) was also significantly upregulated in the EO group (p<0.05), as were IL-1β, IL-6 and IL-8 (p<0.05). Conclusions : These results suggest that the beneficial effect of socket preservation can be explained by suppression of immune responses and inflammation

    Circadian clock and vascular disease.

    Get PDF
    Cardiovascular functions, including blood pressure and vascular functions, show diurnal oscillation. Circadian variations have been clearly shown in the occurrence of cardiovascular events such as acute myocardial infarction. Circadian rhythm strongly influences human biology and pathology. The identification and characterization of mammalian clock genes revealed that they are expressed almost everywhere throughout the body in a circadian manner. In contrast to the central clock in the suprachiasmatic nucleus (SCN), the clock in each tissue or cell is designated as a peripheral clock. It is now accepted that peripheral clocks have their own roles specific to each peripheral organ by regulating the expression of clock-controlled genes (CCGs), although the oscillation mechanisms of the peripheral clock are similar to that of the SCN. However, little was known about how the peripheral clock in the vasculature contributes to the process of cardiovascular disorders. The biological clock allows each organ or cell to anticipate and prepare for changes in external stimuli. Recent evidence obtained using genetically engineered mice with disrupted circadian rhythm showed a novel function of the internal clock in the pathogenesis of endothelial dysfunction, hypertension and hemostasis. Loss of synchronization between the central and peripheral clock also contributes to the pathogenesis of cardiovascular diseases, as restoration of clock homeostasis could prevent disease progression. Identification of CCGs in each organ, as well as discovery of tools to manipulate the phase of each biological clock, will be of great help in establishing a novel chronotherapeutic approach to the prevention and treatment of cardiovascular disorders
    corecore