2,597 research outputs found

    Tokamak engineering test reactor

    Get PDF
    The design criteria for a tokamak engineering test reactor can be met by operating in the two-component mode with reacting ion beams, together with a new blanket-shield design based on internal neutron spectrum shaping. A conceptual reactor design achieving a neutron wall loading of about 1 MW/msup2sup 2 is presented. The tokamak has a major radius of 3.05 m, the plasma cross-section is noncircular with a 2:1 elongation, and the plasma radius in the midplane is 55 cm. The total wall area is 149 msup2sup 2. The plasma conditions are T/sub e/ approximately T/sub i/ approximately 5 keV, and ntau approximately 8 x 10sup12sup 12 cmsup−3sup -3s. The plasma temperature is maintained by injection of 177 MW of 200- keV neutral deuterium beams; the resulting deuterons undergo fusion reactions with the triton-target ions. The D-shaped toroidal field coils are extended out to large major radius (7.0 m), so that the blanket-shield test modules on the outer portion of the torus can be easily removed. The TF coils are superconducting, using a cryogenically stable TiNb design that permits a field at the coil of 80 kG and an axial field of 38 kG. The blanket-shield design for the inner portion of the torus nearest the machine center line utilizes a neutron spectral shifter so that the first structural wall behind the spectral shifter zone can withstand radiation damage for the reactor lifetime. The energy attenuation in this inner blanket is 8 x 10sup−6sup -6. If necessary, a tritium breeding ratio of 0.8 can be achieved using liquid lithium cooling in the outer blanket only. The overall power consumption of the reactor is about 340 MW(e). A neutron wall loading greater than 1 MW/msup2sup 2 can be achieved by increasing the maximum magnetic field or the plasma elongation. (auth

    Optimization of a Ribosomal Structural Domain by Natural Selection

    Get PDF
    A conserved, independently folding domain in the large ribosomal subunit consists of 58 nt of rRNA and a single protein, L11. The tertiary structure of an rRNA fragment carrying the Escherichia coli sequence is marginally stable in vitro but can be substantially stabilized by mutations found in other organisms. To distinguish between possible reasons why natural selection has not evolved a more stable rRNA structure in E. coli, mutations affecting the rRNA tertiary structure were assessed for their in vitro effects on rRNA stability and L11 affinity (in the context of an rRNA fragment) or in vivo effects on cell growth rate and L11 content of ribosomes. The rRNA fragment stabilities ranged from -4 to +9 kcal/mol relative to the wild-type sequence. Variants in the range of -4 to +5 kcal/mol had almost no observable effect in vivo, while more destabilizing mutations (\u3e7 kcal/mol) were not tolerated. The data suggest that the in vivo stability of the complex is roughly -6 kcal/mol and that any single tertiary interaction is dispensable for function as long as a minimum stability of the complex is maintained. On the basis of these data, it seems that the evolution of this domain has not been constrained by inherent structural or functional limits on stability. The estimated stability corresponds to only a few ribosomes per bacterial cell dissociated from L11 at any time; thus the selective advantage for any further increase in stability may be so small as to be outweighed by other competing selective pressures

    Monellin (MNEI) at 1.15 Å resolution

    Get PDF
    The crystal structure of the sweet protein MNEI at 1.15 Å resolution reveals networks of alternate conformations and stably bound negative ions

    Workshop report: Workshop on psychiatric prescribing and psychology testing and intervention in children and adults with Duchenne muscular dystrophy

    Get PDF
    This workshop aimed at summarising knowledge and key issues in psychiatric prescribing and psychological testing in children and adults with Duchenne muscular dystrophy (DMD). It comprised clinicians and patient representatives from the UK and the Netherlands. The following topics were discussed: a model for capturing the range of non-motor problems in the domains of cognition, learning, emotion and behaviour; psychosocial screening tools for use with children and adults; assessing neurocognitive functioning in children and adults; parent and teacher perspectives on psychosocial needs; and psychopharmacological treatment for affective disorders, anxiety disorders, obsessive compulsive disorder, attention deficit hyperactivity disorder (ADHD) and insomnia. Some key considerations included: the need for tools used to assess behavioural and psychosocial functioning to consider motor aspects in DMD; to understand more about working memory performance; the need for early interventions for automatisation problems, which affect reading and arithmetic; appropriate selection of tests for neuropsychology assessments; in schools, acknowledging the range of psychosocial risks and gathering evidence of psychosocial needs; the suitability of selective serotonin reuptake inhibitors for mood and anxiety disorders; the use of stimulant medications for ADHD; melatonin use for insomnia; the cautious use of benzodiazepines; and the need for improving pathways for psychosocial care

    Blinded Predictions and Post Hoc Analysis of the Second Solubility Challenge Data: Exploring Training Data and Feature Set Selection for Machine and Deep Learning Models

    Get PDF
    Accurate methods to predict solubility from molecular structure are highly sought after in the chemical sciences. To assess the state of the art, the American Chemical Society organized a "Second Solubility Challenge"in 2019, in which competitors were invited to submit blinded predictions of the solubilities of 132 drug-like molecules. In the first part of this article, we describe the development of two models that were submitted to the Blind Challenge in 2019 but which have not previously been reported. These models were based on computationally inexpensive molecular descriptors and traditional machine learning algorithms and were trained on a relatively small data set of 300 molecules. In the second part of the article, to test the hypothesis that predictions would improve with more advanced algorithms and higher volumes of training data, we compare these original predictions with those made after the deadline using deep learning models trained on larger solubility data sets consisting of 2999 and 5697 molecules. The results show that there are several algorithms that are able to obtain near state-of-the-art performance on the solubility challenge data sets, with the best model, a graph convolutional neural network, resulting in an RMSE of 0.86 log units. Critical analysis of the models reveals systematic differences between the performance of models using certain feature sets and training data sets. The results suggest that careful selection of high quality training data from relevant regions of chemical space is critical for prediction accuracy but that other methodological issues remain problematic for machine learning solubility models, such as the difficulty in modeling complex chemical spaces from sparse training data sets

    SMASHing the LMC: A Tidally-induced Warp in the Outer LMC and a Large-scale Reddening Map

    Full text link
    We present a study of the three-dimensional (3D) structure of the Large Magellanic Cloud (LMC) using ~2.2 million red clump (RC) stars selected from the Survey of the MAgellanic Stellar History. To correct for line-of-sight dust extinction, the intrinsic RC color and magnitude and their radial dependence are carefully measured by using internal nearly dust-free regions. These are then used to construct an accurate 2D reddening map (165 square degrees with ~10 arcmin resolution) of the LMC disk and the 3D spatial distribution of RC stars. An inclined disk model is fit to the 2D distance map yielding a best-fit inclination angle i = 25.86(+0.73,-1.39) degrees with random errors of +\-0.19 degrees and line-of-nodes position angle theta = 149.23(+6.43,-8.35) degrees with random errors of +/-0.49 degrees. These angles vary with galactic radius, indicating that the LMC disk is warped and twisted likely due to the repeated tidal interactions with the Small Magellanic Cloud (SMC). For the first time, our data reveal a significant warp in the southwestern part of the outer disk starting at rho ~ 7 degrees that departs from the defined LMC plane up to ~4 kpc toward the SMC, suggesting that it originated from a strong interaction with the SMC. In addition, the inner disk encompassing the off-centered bar appears to be tilted up to 5-15 degrees relative to the rest of the LMC disk. These findings on the outer warp and the tilted bar are consistent with the predictions from the Besla et al. simulation of a recent direct collision with the SMC.Comment: 25 pages, 15 figures, published in Ap

    A Vast Thin Plane of Co-rotating Dwarf Galaxies Orbiting the Andromeda Galaxy

    Full text link
    Dwarf satellite galaxies are thought to be the remnants of the population of primordial structures that coalesced to form giant galaxies like the Milky Way. An early analysis noted that dwarf galaxies may not be isotropically distributed around our Galaxy, as several are correlated with streams of HI emission, and possibly form co-planar groups. These suspicions are supported by recent analyses, and it has been claimed that the apparently planar distribution of satellites is not predicted within standard cosmology, and cannot simply represent a memory of past coherent accretion. However, other studies dispute this conclusion. Here we report the existence (99.998% significance) of a planar sub-group of satellites in the Andromeda galaxy, comprising approximately 50% of the population. The structure is vast: at least 400 kpc in diameter, but also extremely thin, with a perpendicular scatter <14.1 kpc (99% confidence). Radial velocity measurements reveal that the satellites in this structure have the same sense of rotation about their host. This finding shows conclusively that substantial numbers of dwarf satellite galaxies share the same dynamical orbital properties and direction of angular momentum, a new insight for our understanding of the origin of these most dark matter dominated of galaxies. Intriguingly, the plane we identify is approximately aligned with the pole of the Milky Way's disk and is co-planar with the Milky Way to Andromeda position vector. The existence of such extensive coherent kinematic structures within the halos of massive galaxies is a fact that must be explained within the framework of galaxy formation and cosmology.Comment: Published in the 3rd Jan 2013 issue of Nature. 19 pages, 4 figures, 1 three-dimensional interactive figure. To view and manipulate the 3-D figure, an Adobe Reader browser plug-in is required; alternatively save to disk and view with Adobe Reade

    Footballers' Image Rights in the New Media Age

    Get PDF
    Image rights, broadly defined as the commercial appropriation of someone's personality, including indices of their image, voice, name and signature, have become increasingly important in the political economy of media sport. A range of legal, economic and political arguments have developed in the UK as to what image rights actually are, their legal efficacy and their potential impact on developments in the long-standing relationship between sport and the media. This paper focuses on the problematic definition of the term in the UK context and how it relates to certain economic and commercial transformations in British football. Using the English Premier League and the ‘celebrity footballer’ David Beckham as its primary focus, the paper traces the rise of image rights clauses in player contracts. This process is analysed in the context of rapid and dramatic change in the media coverage of the sport. The paper focuses on the growing legal complexities of protecting star images in relation to the Internet and the wider issues of football, fandom and popular culture

    Selecting and implementing overview methods: implications from five exemplar overviews

    Get PDF
    This is the final version of the article. Available from BioMed Central via the DOI in this record.Background Overviews of systematic reviews are an increasingly popular method of evidence synthesis; there is a lack of clear guidance for completing overviews and a number of methodological challenges. At the UK Cochrane Symposium 2016, methodological challenges of five overviews were explored. Using data from these five overviews, practical implications to support methodological decision making of authors writing protocols for future overviews are proposed. Methods Methods, and their justification, from the five exemplar overviews were tabulated and compared with areas of debate identified within current literature. Key methodological challenges and implications for development of overview protocols were generated and synthesised into a list, discussed and refined until there was consensus. Results Methodological features of three Cochrane overviews, one overview of diagnostic test accuracy and one mixed methods overview have been summarised. Methods of selection of reviews and data extraction were similar. Either the AMSTAR or ROBIS tool was used to assess quality of included reviews. The GRADE approach was most commonly used to assess quality of evidence within the reviews. Eight key methodological challenges were identified from the exemplar overviews. There was good agreement between our findings and emerging areas of debate within a recent published synthesis. Implications for development of protocols for future overviews were identified. Conclusions Overviews are a relatively new methodological innovation, and there are currently substantial variations in the methodological approaches used within different overviews. There are considerable methodological challenges for which optimal solutions are not necessarily yet known. Lessons learnt from five exemplar overviews highlight a number of methodological decisions which may be beneficial to consider during the development of an overview protocol.The overview conducted by Pollock [19] was supported by a project grant from the Chief Scientist Office of the Scottish Government. The overview conducted by McClurg [21] was supported by a project grant by the Physiotherapy Research Foundation. The overview by Hunt [22] was supported as part of doctoral programme funding by the National Institute for Health Research (NIHR) Collaboration for Leadership in Applied Health Research and Care South West Peninsula (PenCLAHRC). The overview conducted by Estcourt [20] was supported by an NIHR Cochrane Programme Grant for the Safe and Appropriate Use of Blood Components. The overview conducted by Brunton [23] was commissioned by the Department of Health as part of an ongoing programme of work on health policy research synthesis. Alex Pollock is employed by the Nursing, Midwifery and Allied Health Professions (NMAHP) Research Unit, which is supported by the Chief Scientist Office of the Scottish Government. Pauline Campbell is supported by the Chief Nurses Office of the Scottish Government
    • …
    corecore