123 research outputs found

    Human AP Endonuclease 1: A Potential Marker for the Prediction of Environmental Carcinogenesis Risk

    Get PDF
    Human apurinic/apyrimidinic endonuclease 1 (APE1) functions mainly in DNA repair as an enzyme removing AP sites and in redox signaling as a coactivator of various transcription factors. Based on these multifunctions of APE1 within cells, numerous studies have reported that the alteration of APE1 could be a crucial factor in development of human diseases such as cancer and neurodegeneration. In fact, the study on the combination of an individual’s genetic make-up with environmental factors (gene-environment interaction) is of great importance to understand the development of diseases, especially lethal diseases including cancer. Recent reports have suggested that the human carcinogenic risk following exposure to environmental toxicants is affected by APE1 alterations in terms of gene-environment interactions. In this review, we initially outline the critical APE1 functions in the various intracellular mechanisms including DNA repair and redox regulation and its roles in human diseases. Several findings demonstrate that the change in expression and activity as well as genetic variability of APE1 caused by environmental chemical (e.g., heavy metals and cigarette smoke) and physical carcinogens (ultraviolet and ionizing radiation) is likely associated with various cancers. These enable us to ultimately suggest APE1 as a vital marker for the prediction of environmental carcinogenesis risk

    Caloric restriction of db/db mice reverts hepatic steatosis and body weight with divergent hepatic metabolism

    Get PDF
    Non-alcoholic fatty liver disease (NAFLD) is one of the most frequent causes of liver disease and its prevalence is a serious and growing clinical problem. Caloric restriction (CR) is commonly recommended for improvement of obesity-related diseases such as NAFLD. However, the effects of CR on hepatic metabolism remain unknown. We investigated the effects of CR on metabolic dysfunction in the liver of obese diabetic db/db mice. We found that CR of db/db mice reverted insulin resistance, hepatic steatosis, body weight and adiposity to those of db/m mice. H-NMR- and UPLC-QTOF-MS-based metabolite profiling data showed significant metabolic alterations related to lipogenesis, ketogenesis, and inflammation in db/db mice. Moreover, western blot analysis showed that lipogenesis pathway enzymes in the liver of db/db mice were reduced by CR. In addition, CR reversed ketogenesis pathway enzymes and the enhanced autophagy, mitochondrial biogenesis, collagen deposition and endoplasmic reticulum stress in db/db mice. In particular, hepatic inflammation-related proteins including lipocalin-2 in db/db mice were attenuated by CR. Hepatic metabolomic studies yielded multiple pathological mechanisms of NAFLD. Also, these findings showed that CR has a therapeutic effect by attenuating the deleterious effects of obesity and diabetes-induced multiple complications

    A case of hepatocellular carcinoma in the caudate lobe successfully treated by transcatheter arterial chemoembolization using drug-eluting beads

    Get PDF
    Hepatocellular carcinoma (HCC) in the caudate lobe remains one of the most intricate locations where various treatments tend to pose problems with regard to the optimal approach. Surgical resection has been regarded as the most effective treatment; however, isolated resection of the caudate lobe is strenuous and associated with a high rate of early recurrence. Percutaneous ablation might be technically difficult or impossible to perform due to the deep location of tumors and adjacent large vessels. Treatment with drug-eluting beads (DEB) can potentially enhance the therapeutic efficacy for patients with unresectable HCC by drawing on the slower, more consistent drug delivery process. We described a case of a 62-year-old man with HCC in the caudate lobe who was successfully treated by DEB

    Isolation and characterization of canine umbilical cord blood-derived mesenchymal stem cells

    Get PDF
    Human umbilical cord blood-derived mesenchymal stem cells (MSCs) are known to possess the potential for multiple differentiations abilities in vitro and in vivo. In canine system, studying stem cell therapy is important, but so far, stem cells from canine were not identified and characterized. In this study, we successfully isolated and characterized MSCs from the canine umbilical cord and its fetal blood. Canine MSCs (cMSCs) were grown in medium containing low glucose DMEM with 20% FBS. The cMSCs have stem cells expression patterns which are concerned with MSCs surface markers by fluorescence-activated cell sorter analysis. The cMSCs had multipotent abilities. In the neuronal differentiation study, the cMSCs expressed the neuronal markers glial fibrillary acidic protein (GFAP), neuronal class III β tubulin (Tuj-1), neurofilament M (NF160) in the basal culture media. After neuronal differentiation, the cMSCs expressed the neuronal markers Nestin, GFAP, Tuj-1, microtubule-associated protein 2, NF160. In the osteogenic & chondrogenic differentiation studies, cMSCs were stained with alizarin red and toluidine blue staining, respectively. With osteogenic differentiation, the cMSCs presented osteoblastic differentiation genes by RT-PCR. This finding also suggests that cMSCs might have the ability to differentiate multipotentially. It was concluded that isolated MSCs from canine cord blood have multipotential differentiation abilities. Therefore, it is suggested that cMSCs may represent a be a good model system for stem cell biology and could be useful as a therapeutic modality for canine incurable or intractable diseases, including spinal cord injuries in future regenerative medicine studies

    Differential LINE-1 Hypomethylation of Gastric Low-Grade Dysplasia from High Grade Dysplasia and Intramucosal Cancer

    Get PDF

    Cinnamon extract induces tumor cell death through inhibition of NFκB and AP1

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Cinnamomum cassia </it>bark is the outer skin of an evergreen tall tree belonging to the family Lauraceae containing several active components such as essential oils (cinnamic aldehyde and cinnamyl aldehyde), tannin, mucus and carbohydrate. They have various biological functions including anti-oxidant, anti-microbial, anti-inflammation, anti-diabetic and anti-tumor activity. Previously, we have reported that anti-cancer effect of cinnamon extracts is associated with modulation of angiogenesis and effector function of CD8<sup>+ </sup>T cells. In this study, we further identified that anti-tumor effect of cinnamon extracts is also link with enhanced pro-apoptotic activity by inhibiting the activities NFκB and AP1 in mouse melanoma model.</p> <p>Methods</p> <p>Water soluble cinnamon extract was obtained and quality of cinnamon extract was evaluated by HPLC (High Performance Liquid Chromatography) analysis. In this study, we tested anti-tumor activity and elucidated action mechanism of cinnamon extract using various types of tumor cell lines including lymphoma, melanoma, cervix cancer and colorectal cancer <it>in vitro </it>and <it>in vivo </it>mouse melanoma model.</p> <p>Results</p> <p>Cinnamon extract strongly inhibited tumor cell proliferation <it>in vitro </it>and induced active cell death of tumor cells by up-regulating pro-apoptotic molecules while inhibiting NFκB and AP1 activity and their target genes such as <it>Bcl-2</it>, <it>BcL-xL </it>and <it>survivin</it>. Oral administration of cinnamon extract in melanoma transplantation model significantly inhibited tumor growth with the same mechanism of action observed <it>in vitro</it>.</p> <p>Conclusion</p> <p>Our study suggests that anti-tumor effect of cinnamon extracts is directly linked with enhanced pro-apoptotic activity and inhibition of NFκB and AP1 activities and their target genes <it>in vitro </it>and <it>in vivo </it>mouse melanoma model. Hence, further elucidation of active components of cinnamon extract could lead to development of potent anti-tumor agent or complementary and alternative medicine for the treatment of diverse cancers.</p

    Analysis of the dihydrofolate reductase-thymidylate synthase gene sequences in Plasmodium vivax field isolates that failed chloroquine treatment

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To use pyrimethamine as an alternative anti-malarial drug for chloroquine-resistant malaria parasites, it was necessary to determine the enzyme's genetic variation in dihydrofolate reductase-thymidylate syntase (DHFR-TS) among Korean strains.</p> <p>Methods</p> <p>Genetic variation of <it>dhfr-ts </it>genes of <it>Plasmodium vivax </it>clinical isolates from patients who did not respond to drug treatment (<it>n </it>= 11) in Korea were analysed. The genes were amplified using the polymerase chain reaction (PCR) with genomic DNA as a template.</p> <p>Results</p> <p>Sequence analysis showed that the open reading frame (ORF) of 1,857 nucleotides encoded a deduced protein of 618 amino acids (aa). Alignment with the DHFR-TS genes of other malaria parasites showed that a 231-residue DHFR domain and a 286-residue TS domain were seperated by a 101-aa linker region. This ORF shows 98.7% homology with the <it>P. vivax </it>Sal I strain (XM001615032) in the DHFR domain, 100% in the linker region and 99% in the TS domain. Comparison of the DHFR sequences from pyrimethamine-sensitive and pyrimethamine-resistant <it>P. vivax </it>isolates revealed that nine isolates belonged to the sensitive strain, whereas two isolates met the criteria for resistance. In these two isolates, the amino acid at position 117 is changed from serine to asparagine (S117N). Additionally, all Korean isolates showed a deletion mutant of THGGDN in short tandem repetitive sequences between 88 and 106 amino acid.</p> <p>Conclusions</p> <p>These results suggest that sequence variations in the DHFR-TS represent the prevalence of antifolate-resistant <it>P. vivax </it>in Korea. Two of 11 isolates have the Ser to Asn mutation in codon 117, which is the major determinant of pyrimethamine resistance in <it>P. vivax</it>. Therefore, the introduction of pyrimethamine for the treatment of chloroquine-resistant vivax malaria as alternative drug in Korea should be seriously considered.</p

    Gate induced drain leakage reduction with analysis of gate fringing field effect on high-kappa/metal gate CMOS technology

    No full text
    We suggest the optimum permittivity for a high-kappa/metal gate (HKMG) CMOS structure based on the trade-off characteristics between the fringing field induced barrier lowering (FIBL) and gate induced drain leakage (GIDL). By adopting the high-kappa gate dielectric, the GIDL from the band-to-band tunneling at the interface of gate and lightly doped drain (LDD) is suppressed with wide tunneling width owing to the enhanced fringing field, while the FIBL effects is degenerated as the previous reports. These two effects from the gate fringing field are studied extensively to manage the leakage current of HKMG for low power applications. (C) 2015 The Japan Society of Applied Physicclose0
    corecore