238 research outputs found

    A correlative study of Quantitative EMG and biopsy findings in 31 patients with myopathies

    Get PDF
    A direct correlation of QEMG with muscle biopsy findings might help delineate the sensitivity of QEMG in identifying muscle pathology as well as provide information on electrophysiological- histological correlations. In a study of 31 patients with a variety of myopathies we found that the sensitivity of QEMG was between 24 to 69% depending of the specific method of signal analysis. The positive predictive value of abnormal QEMG was more than 90% while its negative predictive value was only about 20%. Amplitude outlier analysis was superior especially in minimally weak muscles (MRC > 4) and was particularly sensitive at detecting increased variability in fiber size and more subtle myopathic changes

    Optimizing Bus Routes in Nicosia

    Get PDF
    In this report the conclusions by the team of experts that took the ā€Trans- portation Organization of the Nicosia District (OSEL)ā€ challenge are provided. The challenge was to identify ways to improve efficiency of the bus network and increase the utilization of the network by the public. A thorough analysis of the various factors that affect bus route planning is provided. Moreover, a demonstration of a simplified route planning problem is described in order to motivate further work on this topic. Recommendations are provided to the company on the way to move forward towards solving the problem of creating a bus network with increased efficiency and grater appeal to the public. Specific recommendations include the collection of a larger amounts of data that can be used to generate models used in simulation analysis. Data include demographic data on bus usage and bus usage preferences by the public. In addition, data is required on bus travel times, walking distance to the nearest bus stop by the commuter, and traffic data

    Tailoring CD19xCD3-DART exposure enhances T-cells to eradication of B-cell neoplasms.

    Get PDF
    Many patients with B-cell malignancies can be successfully treated, although tumor eradication is rarely achieved. T-cell-directed killing of tumor cells using engineered T-cells or bispecific antibodies is a promising approach for the treatment of hematologic malignancies. We investigated the efficacy of CD19xCD3 DART bispecific antibody in a broad panel of human primary B-cell malignancies. The CD19xCD3 DART identified 2 distinct subsets of patients, in which the neoplastic lymphocytes were eliminated with rapid or slow kinetics. Delayed responses were always overcome by a prolonged or repeated DART exposure. Both CD4 and CD8 effector cytotoxic cells were generated, and DART-mediated killing of CD4+ cells into cytotoxic effectors required the presence of CD8+ cells. Serial exposures to DART led to the exponential expansion of CD4 + and CD8 + cells and to the sequential ablation of neoplastic cells in absence of a PD-L1-mediated exhaustion. Lastly, patient-derived neoplastic B-cells (B-Acute Lymphoblast Leukemia and Diffuse Large B Cell Lymphoma) could be proficiently eradicated in a xenograft mouse model by DART-armed cytokine induced killer (CIK) cells. Collectively, patient tailored DART exposures can result in the effective elimination of CD19 positive leukemia and B-cell lymphoma and the association of bispecific antibodies with unmatched CIK cells represents an effective modality for the treatment of CD19 positive leukemia/lymphoma

    GA-ANN Short-Term Electricity Load Forecasting

    Get PDF
    This paper presents a methodology for short-term load forecasting based on genetic algorithm feature selection and artificial neural network modeling. A feed forward artificial neural network is used to model the 24-h ahead load based on past consumption, weather and stock index data. A genetic algorithm is used in order to find the best subset of variables for modeling. Three data sets of different geographical locations, encompassing areas of different dimensions with distinct load profiles are used in order to evaluate the methodology. The developed approach was found to generate models achieving a minimum mean average percentage error under 2 %. The feature selection algorithm was able to significantly reduce the number of used features and increase the accuracy of the models

    Primary demyelination induced by exposure to tellurium alters Schwann cell gene expression: a model for intracellular targeting of NGF receptor

    Get PDF
    Exposure of developing rats to tellurium results in a highly synchronous segmental demyelination of peripheral nerves with sparing of axons; this demyelination is followed closely by a period of rapid remyelination. Demyelination occurs subsequent to a tellurium-induced block in the synthesis of cholesterol, the major myelin lipid. We utilized the techniques of Northern blotting, in situ hybridization, and immunocytochemistry to examine temporal alterations in Schwann cell gene expression related to demyelination and remyelination. Tellurium- induced demyelination is associated with downregulation of myelin protein expression and a corresponding upregulation of NGF receptor (NGF-R) and glial fibrillary acidic protein (GFAP) expression. Steady- state mRNA levels (expressed on a ā€œper nerveā€ basis) for P0, the major myelin protein, were decreased by about 50% after 5 d of tellurium exposure, while levels of mRNA for NGF-R and GFAP were markedly increased (about 15-fold). In situ hybridization of teased fibers suggested that the increase in steady-state mRNA levels for NGF-R was primarily associated with demyelinated internodes and not with adjacent unaffected internodes. Although P0 message was almost totally absent from demyelinating internodes, it was also reduced in normal-appearing internodes as well. This suggests that limiting the supply of a required membrane component (cholesterol) may lead to partial downregulation of myelin gene expression in all myelinating Schwann cells. In partially demyelinated internodes, NGF-R and GFAP immunofluorescence appeared largely confined to the demyelinated regions. This suggests specific targeting of these proteins to local areas of the Schwann cell where there is myelin loss. These results demonstrate that demyelination is associated with reversion of the affected Schwann cells to a precursor cell phenotype. Because axons remain intact, our results suggest that these changes in Schwann cell gene expression do not require input from a degenerating axon, but instead may depend on whether concerted synthesis of myelin is occurring

    CD36-mediated activation of endothelial cell apoptosis by an N-terminal recombinant fragment of thrombospondin-2 inhibits breast cancer growth and metastasis in vivo

    Get PDF
    Thus far the clinical benefits seen in breast cancer patients treated with drugs targeting the vascular endothelial growth factor (VEGF) pathway are only modest. Consequently, additional antiangiogenic approaches for treatment of breast cancer need to be investigated. Thrombospondin-2 (TSP-2) has been shown to inhibit tumor growth and angiogenesis with a greater potency than the related molecule TSP-1. The systemic effects of TSP-2 on tumor metastasis and the underlying molecular mechanisms of the antiangiogenic activity of TSP-2 have remained poorly understood. We generated a recombinant fusion protein consisting of the N-terminal region of TSP-2 and the IgG-Fc1 fragment (N-TSP2-Fc) and could demonstrate that the antiangiogenic activity of N-TSP2-Fc is dependent on the CD36 receptor. We found that N-TSP2-Fc inhibited VEGF-induced tube formation of human dermal microvascular endothelial cells (HDMEC) on matrigel in vitro and that concurrent incubation of anti-CD36 antibody with N-TSP2-Fc resulted in tube formation that was comparable to untreated control. N-TSP2-Fc potently induced apoptosis of HDMEC in vitro in a CD36-dependent manner. Moreover, we could demonstrate a CD36 receptor-mediated loss of mitochondrial membrane potential and activation of caspase-3 in HDMEC in vitro. Daily intraperitoneal injections of N-TSP2-Fc resulted in a significant inhibition of the growth of human MDA-MB-435 and MDA-MB-231 tumor cells grown in the mammary gland of immunodeficient nude mice and in reduced tumor vascularization. Finally, increased serum concentrations of N-TSP2-Fc significantly inhibited regional metastasis to lymph nodes and distant metastasis to lung as shown by quantitative real-time alu PCR. These results identify N-TSP2-Fc as a potent systemic inhibitor of tumor metastasis and provide strong evidence for an important role of the CD36 receptor in mediating the antiangiogenic activity of TSP-2
    • ā€¦
    corecore