480 research outputs found

    A Way Forward: Transparency at American Law Schools

    Get PDF
    This Article is similar to Law School Transparency’s original white paper, available at http://lawschooltransparency.com/documents/LST_White_Paper_April_2010.pdf. The original paper set forth an exposé of the available law school employment information and proposed a way for law schools to voluntarily release better information. This Article updates descriptions of the current employment information, explains the recent reforms at the ABA Section of Legal Education that followed from the original paper, and offers a new proposal for the Section of Legal Education to adopt for the betterment of the legal professio

    The Crisis in Legal Education: Dabbling in Disaster Planning

    Get PDF
    The legal education crisis has already struck for many recent law school graduates, signaling potential disaster for law schools already struggling with their own economic challenges. Law schools have high fixed costs caused by competition between schools, the unchecked expansion of federal loan programs, a widely exploited information asymmetry about graduate employment outcomes, and a lack of financial discipline masquerading as innovation. As a result, tuition is up, jobs are down, and skepticism of the value of a J.D. has never been higher. If these trends do not reverse course, droves of students will continue to graduate with debt that greatly reduces their ability to fulfill the law school graduate\u27s traditional and important role in American society. The point at which the law school crisis becomes a disaster for legal education is debatable, but the importance of preparing for and forestalling this disaster is not. This Article serves two forward-looking purposes that stem from the premise that American legal education requires structural change to reduce the cost of obtaining a legal education. First, we set a framework for thinking about reforms to the method of delivering legal education. Second, we examine three blueprints for structural reform: one that has already been implemented and is ineffective, and two that set the discussion on the right track. These blueprints reject mere tinkering in favor of refocusing the attention of legal education stakeholders on the drastic structural changes needed to provide quality, affordable legal education. While we provide only a starting point for considering how the two new models could work in principle, they serve as an intellectual blueprint that can pave the way for new and better ideas about legal education. It is clear that cost reform is necessary, and it is likely that substantial reform is coming. The shape of this reform depends on who gets involved, who we hope include actors beyond those who have set legal education on a path toward disaster

    Abundance trends of highly migratory species in the Atlantic Ocean: accounting for water temperature profiles

    Get PDF
    Relative abundance trends of highly migratory species (HMS) have played a central role in debates over the health of global fisheries. However, such trends have mostly been inferred from fishery catch rates, which can provide misleading signals of relative abundance. While many biases are accounted for through traditional catch rate standardization, pelagic habitat fished is rarely directly considered. Using a method that explicitly accounts for temperature regimes, we analysed data from the US pelagic longline fishery to estimate relative abundance trends for 34 HMS in the Atlantic Ocean from 1987 through 2013. This represents one of the largest studies of HMS abundance trends. Model selection emphasized the importance of accounting for pelagic habitat fished with water column temperature being included in nearly every species’ model, and in extreme cases, a temperature variable explained 50–60% of the total deviance. Our estimated trends represent observations from one fishery only, and a more integrated stock assessment should form the basis for conclusions about stock status overall. Nonetheless, our trends serve as indicators of stock abundance and they suggest that a majority of HMS (71% of analysed species) are either declining in relative abundance or declined initially with no evidence of rebuilding. Conversely, 29% of the species exhibited stable, increasing, or recovering trends; however, these trends were more prevalent among tunas than either billfishes or sharks. By estimating the effects of pelagic habitat on fishery catch rates, our results can be used in combination with ocean temperature trends and forecasts to support bycatch avoidance and other time-area management decisions

    Evolution of protein interfaces in multimers and fibrils

    Get PDF
    A majority of cellular proteins function as part of multimeric complexes of two or more subunits. Multimer formation requires interactions between protein surfaces that lead to closed structures, such as dimers and tetramers. If proteins interact in an open-ended way, uncontrolled growth of fibrils can occur, which is likely to be detrimental in most cases. We present a statistical physics model that allows aggregation of proteins as either closed dimers or open fibrils of all lengths. We use pairwise amino-acid contact energies to calculate the energies of interacting protein surfaces. The probabilities of all possible aggregate configurations can be calculated for any given sequence of surface amino acids. We link the statistical physics model to a population genetics model that describes the evolution of the surface residues. When proteins evolve neutrally, without selection for or against multimer formation, we find that a majority of proteins remain as monomers at moderate concentrations, but strong dimer-forming or fibril-forming sequences are also possible. If selection is applied in favor of dimers or in favor of fibrils, then it is easy to select either dimer-forming or fibril-forming sequences. It is also possible to select for oriented fibrils with protein subunits all aligned in the same direction. We measure the propensities of amino acids to occur at interfaces relative to noninteracting surfaces and show that the propensities in our model are strongly correlated with those that have been measured in real protein structures. We also show that there are significant differences between amino acid frequencies at isologous and heterologous interfaces in our model, and we observe that similar effects occur in real protein structures

    Emerging methods and tools for environmental risk assessment, decision-making, and policy for nanomaterials: summary of NATO Advanced Research Workshop

    Get PDF
    Nanomaterials and their associated technologies hold promising opportunities for the development of new materials and applications in a wide variety of disciplines, including medicine, environmental remediation, waste treatment, and energy conservation. However, current information regarding the environmental effects and health risks associated with nanomaterials is limited and sometimes contradictory. This article summarizes the conclusions of a 2008 NATO workshop designed to evaluate the wide-scale implications (e.g., benefits, risks, and costs) of the use of nanomaterials on human health and the environment. A unique feature of this workshop was its interdisciplinary nature and focus on the practical needs of policy decision makers. Workshop presentations and discussion panels were structured along four main themes: technology and benefits, human health risk, environmental risk, and policy implications. Four corresponding working groups (WGs) were formed to develop detailed summaries of the state-of-the-science in their respective areas and to discuss emerging gaps and research needs. The WGs identified gaps between the rapid advances in the types and applications of nanomaterials and the slower pace of human health and environmental risk science, along with strategies to reduce the uncertainties associated with calculating these risks

    Canvass: a crowd-sourced, natural-product screening library for exploring biological space

    Full text link
    NCATS thanks Dingyin Tao for assistance with compound characterization. This research was supported by the Intramural Research Program of the National Center for Advancing Translational Sciences, National Institutes of Health (NIH). R.B.A. acknowledges support from NSF (CHE-1665145) and NIH (GM126221). M.K.B. acknowledges support from NIH (5R01GM110131). N.Z.B. thanks support from NIGMS, NIH (R01GM114061). J.K.C. acknowledges support from NSF (CHE-1665331). J.C. acknowledges support from the Fogarty International Center, NIH (TW009872). P.A.C. acknowledges support from the National Cancer Institute (NCI), NIH (R01 CA158275), and the NIH/National Institute of Aging (P01 AG012411). N.K.G. acknowledges support from NSF (CHE-1464898). B.C.G. thanks the support of NSF (RUI: 213569), the Camille and Henry Dreyfus Foundation, and the Arnold and Mabel Beckman Foundation. C.C.H. thanks the start-up funds from the Scripps Institution of Oceanography for support. J.N.J. acknowledges support from NIH (GM 063557, GM 084333). A.D.K. thanks the support from NCI, NIH (P01CA125066). D.G.I.K. acknowledges support from the National Center for Complementary and Integrative Health (1 R01 AT008088) and the Fogarty International Center, NIH (U01 TW00313), and gratefully acknowledges courtesies extended by the Government of Madagascar (Ministere des Eaux et Forets). O.K. thanks NIH (R01GM071779) for financial support. T.J.M. acknowledges support from NIH (GM116952). S.M. acknowledges support from NIH (DA045884-01, DA046487-01, AA026949-01), the Office of the Assistant Secretary of Defense for Health Affairs through the Peer Reviewed Medical Research Program (W81XWH-17-1-0256), and NCI, NIH, through a Cancer Center Support Grant (P30 CA008748). K.N.M. thanks the California Department of Food and Agriculture Pierce's Disease and Glassy Winged Sharpshooter Board for support. B.T.M. thanks Michael Mullowney for his contribution in the isolation, elucidation, and submission of the compounds in this work. P.N. acknowledges support from NIH (R01 GM111476). L.E.O. acknowledges support from NIH (R01-HL25854, R01-GM30859, R0-1-NS-12389). L.E.B., J.K.S., and J.A.P. thank the NIH (R35 GM-118173, R24 GM-111625) for research support. F.R. thanks the American Lebanese Syrian Associated Charities (ALSAC) for financial support. I.S. thanks the University of Oklahoma Startup funds for support. J.T.S. acknowledges support from ACS PRF (53767-ND1) and NSF (CHE-1414298), and thanks Drs. Kellan N. Lamb and Michael J. Di Maso for their synthetic contribution. B.S. acknowledges support from NIH (CA78747, CA106150, GM114353, GM115575). W.S. acknowledges support from NIGMS, NIH (R15GM116032, P30 GM103450), and thanks the University of Arkansas for startup funds and the Arkansas Biosciences Institute (ABI) for seed money. C.R.J.S. acknowledges support from NIH (R01GM121656). D.S.T. thanks the support of NIH (T32 CA062948-Gudas) and PhRMA Foundation to A.L.V., NIH (P41 GM076267) to D.S.T., and CCSG NIH (P30 CA008748) to C.B. Thompson. R.E.T. acknowledges support from NIGMS, NIH (GM129465). R.J.T. thanks the American Cancer Society (RSG-12-253-01-CDD) and NSF (CHE1361173) for support. D.A.V. thanks the Camille and Henry Dreyfus Foundation, the National Science Foundation (CHE-0353662, CHE-1005253, and CHE-1725142), the Beckman Foundation, the Sherman Fairchild Foundation, the John Stauffer Charitable Trust, and the Christian Scholars Foundation for support. J.W. acknowledges support from the American Cancer Society through the Research Scholar Grant (RSG-13-011-01-CDD). W.M.W.acknowledges support from NIGMS, NIH (GM119426), and NSF (CHE1755698). A.Z. acknowledges support from NSF (CHE-1463819). (Intramural Research Program of the National Center for Advancing Translational Sciences, National Institutes of Health (NIH); CHE-1665145 - NSF; CHE-1665331 - NSF; CHE-1464898 - NSF; RUI: 213569 - NSF; CHE-1414298 - NSF; CHE1361173 - NSF; CHE1755698 - NSF; CHE-1463819 - NSF; GM126221 - NIH; 5R01GM110131 - NIH; GM 063557 - NIH; GM 084333 - NIH; R01GM071779 - NIH; GM116952 - NIH; DA045884-01 - NIH; DA046487-01 - NIH; AA026949-01 - NIH; R01 GM111476 - NIH; R01-HL25854 - NIH; R01-GM30859 - NIH; R0-1-NS-12389 - NIH; R35 GM-118173 - NIH; R24 GM-111625 - NIH; CA78747 - NIH; CA106150 - NIH; GM114353 - NIH; GM115575 - NIH; R01GM121656 - NIH; T32 CA062948-Gudas - NIH; P41 GM076267 - NIH; R01GM114061 - NIGMS, NIH; R15GM116032 - NIGMS, NIH; P30 GM103450 - NIGMS, NIH; GM129465 - NIGMS, NIH; GM119426 - NIGMS, NIH; TW009872 - Fogarty International Center, NIH; U01 TW00313 - Fogarty International Center, NIH; R01 CA158275 - National Cancer Institute (NCI), NIH; P01 AG012411 - NIH/National Institute of Aging; Camille and Henry Dreyfus Foundation; Arnold and Mabel Beckman Foundation; Scripps Institution of Oceanography; P01CA125066 - NCI, NIH; 1 R01 AT008088 - National Center for Complementary and Integrative Health; W81XWH-17-1-0256 - Office of the Assistant Secretary of Defense for Health Affairs through the Peer Reviewed Medical Research Program; P30 CA008748 - NCI, NIH, through a Cancer Center Support Grant; California Department of Food and Agriculture Pierce's Disease and Glassy Winged Sharpshooter Board; American Lebanese Syrian Associated Charities (ALSAC); University of Oklahoma Startup funds; 53767-ND1 - ACS PRF; PhRMA Foundation; P30 CA008748 - CCSG NIH; RSG-12-253-01-CDD - American Cancer Society; RSG-13-011-01-CDD - American Cancer Society; CHE-0353662 - National Science Foundation; CHE-1005253 - National Science Foundation; CHE-1725142 - National Science Foundation; Beckman Foundation; Sherman Fairchild Foundation; John Stauffer Charitable Trust; Christian Scholars Foundation)Published versionSupporting documentatio

    Transverse momentum and centrality dependence of dihadron correlations in Au+Au collisions at sqrt(s_NN)=200 GeV: Jet-quenching and the response of partonic matter

    Full text link
    Azimuthal angle \Delta\phi correlations are presented for charged hadrons from dijets for 0.4 < p_T < 10 GeV/c in Au+Au collisions at sqrt(s_NN) = 200 GeV. With increasing p_T, the away-side distribution evolves from a broad to a concave shape, then to a convex shape. Comparisons to p+p data suggest that the away-side can be divided into a partially suppressed "head" region centered at Delta\phi ~ \pi, and an enhanced "shoulder" region centered at Delta\phi ~ \pi +/- 1.1. The p_T spectrum for the "head" region softens toward central collisions, consistent with the onset of jet quenching. The spectral slope for the "shoulder" region is independent of centrality and trigger p_T, which offers constraints on energy transport mechanisms and suggests that the "shoulder" region contains the medium response to energetic jets.Comment: 420 authors from 58 institutions, 6 pages, 4 figures. Submitted to Physical Review Letters. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Measurement of high-p_T Single Electrons from Heavy-Flavor Decays in p+p Collisions at sqrt(s) = 200 GeV

    Get PDF
    The momentum distribution of electrons from decays of heavy flavor (charm and beauty) for midrapidity |y| < 0.35 in p+p collisions at sqrt(s) = 200 GeV has been measured by the PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC) over the transverse momentum range 0.3 < p_T < 9 GeV/c. Two independent methods have been used to determine the heavy flavor yields, and the results are in good agreement with each other. A fixed-order-plus-next-to-leading-log pQCD calculation agrees with the data within the theoretical and experimental uncertainties, with the data/theory ratio of 1.72 +/- 0.02^stat +/- 0.19^sys for 0.3 < p_T < 9 GeV/c. The total charm production cross section at this energy has also been deduced to be sigma_(c c^bar) = 567 +/- 57^stat +/- 224^sys micro barns.Comment: 375 authors from 57 institutions, 6 pages, 3 figures. Submitted to Physical Review Letters. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm
    corecore