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A majority of cellular proteins function as part of multimeric complexes of two or more subunits.
Multimer formation requires interactions between protein surfaces that lead to closed structures,
such as dimers and tetramers. If proteins interact in an open-ended way, uncontrolled growth of
fibrils can occur, which is likely to be detrimental in most cases. We present a statistical physics
model that allows aggregation of proteins as either closed dimers or open fibrils of all lengths. We
use pairwise amino-acid contact energies to calculate the energies of interacting protein surfaces.
The probabilities of all possible aggregate configurations can be calculated for any given sequence
of surface amino acids. We link the statistical physics model to a population genetics model that
describes the evolution of the surface residues. When proteins evolve neutrally, without selection
for or against multimer formation, we find that a majority of proteins remain as monomers at
moderate concentrations, but strong dimer-forming or fibril-forming sequences are also possible.
If selection is applied in favour of dimers or in favour of fibrils, then it is easy to select either
dimer-forming or fibril-forming sequences. It is also possible to select for oriented fibrils with
protein subunits all aligned in the same direction. We measure the propensities of amino acids to
occur at interfaces relative to non-interacting surfaces, and show that the propensities in our model
are strongly correlated with those that have been measured in real protein structures. We also
show that there are significant differences between amino acid frequencies at isologous and het-
erologous interfaces in our model, and we observe that similar effects occur in real protein structures.

* Corresponding author email: higgsp@mcmaster.ca
Submitted to Journal of Chemical Physics
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I. INTRODUCTION

Many features of cellular biology are governed by the
actions and interactions of proteins, and an understand-
ing of their evolution is crucial to understanding the evo-
lution of life itself. An important property of proteins is
the formation of complexes consisting of two or more sub-
units, with 30-50% forming homo-oligomers composed of
identical monomers [1]. Homo-dimers constitute the ma-
jority (41%) of oligomeric proteins of known structure [2].
Two identical proteins can aggregate in a closed way, with
isologous (i.e. head-to-head) interfaces, or in an open
way, with heterologous (i.e. head-to-tail) interfaces. If
open, they have the possibility of forming infinite fibrils.
Amyloid fibrils, formed by normally soluble proteins that
assemble to form open insoluble fibers, are resistant to
degradation and their formation can accompany a variety
of human diseases, including Alzheimer’s disease, type-2
diabetes and spongiform encephalopathies [3]. Given the
importance of homo-oligomers in the cellular repertoire,
from mediating gene expression, to functioning as en-
zymes, ion channels and receptors [4], it is important to
understand the competition between these different ways
of assembling. More generally, mutations of amino acids
at protein-protein interfaces are known to have large ef-

fects on human health because they affect the formation
of protein complexes [5].

Previous theoretical works have modeled protein fib-
rillogenesis based on mass action kinetics [6] and ther-
modynamics of peptide solutions including formation of
protofilament intermediates [7, 8]. In this work, we
present a simple model that allows both the physical
and the evolutionary aspects of protein aggregation to
be addressed. Our approach is similar to other previ-
ous works [9, 10] in adopting a transfer matrix approach
to obtaining the equilibrium concentrations of oligomers
of different lengths as a function of the free energies of
interaction between proteins.

The novelty of our work is that it connects the sta-
tistical physics of protein aggregation to the evolution
of higher-order protein structure by using population ge-
netics theory to calculate the expected frequency of each
protein in the ensemble of sequences generated by muta-
tion and natural selection. We consider cases where the
fitness is independent of whether the protein aggregates,
and cases where fitness is a function of structure, includ-
ing selection for the formation of dimers, and selection
both for and against the formation of fibrils.

Our model considers a protein with two possible inter-
acting surfaces, labelled A and B. There are two possible
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isologous interfaces (AA and BB), and one heterologous
interface (AB). The energies of these interfaces depend
on the amino acids on the two surfaces, as described in
Section II. The model allows for the formation of closed
dimers, which occur when one or the other of the isol-
ogous interfaces is strongly attractive and the other in-
terfaces are weak. It also allows for the formation of fib-
rils with proteins oriented in the same direction in cases
where the heterologous interface is strong, or fibrils with
proteins aligned in alternating directions in cases where
both isologous interfaces are strong. Using the transfer
matrix method given in Section III, it is possible to cal-
culate the probabilities Pn that a protein is found in an
assembly of n units. These probabilities depend on the
values of the three interface energies.

The multimeric states of proteins are sometimes ob-
served to change rapidly on an evolutionary time scale
[11, 12]. This may be an indication of selection for or
against multimers, or may simply be a result of neu-
tral evolution. Within our model, it is possible to ask
how likely dimer and fibril structures are to form un-
der neutral evolution. We include selection in the model
using the strong-selection weak-mutation approximation
[13], which allows the expected frequencies of sequences
in the presence of selection to be calculated from their
frequencies under neutral evolution. We use a Monte
Carlo Markov Chain method (Section IV) to generate a
set of representative protein sequences with frequencies
given by evolutionary theory.

Thus, our model provides a simple way of linking evolu-
tionary observations to the underlying statistical physics
of protein aggregation. Within this framework, we con-
sider probabilities of formation of dimers and fibrils, both
under neutral evolution and under the action of several
different kinds of selection. The model also predicts that
the frequencies of amino acids at strongly-binding in-
terfaces are significantly different from their frequencies
under the mutation process alone, and from their fre-
quencies at non-interacting, exposed surfaces. Further-
more, the frequencies of amino acids at isologous and
heterologous interfaces are found to differ from one an-
other. These predictions are compared with observations
of amino acids frequencies at interfaces in databases of
real proteins.

II. CALCULATION OF INTERFACE ENERGIES

We consider two opposing faces of the protein, de-
noted A and B, as potential binding surfaces (as shown in
Fig. 1). There are two possible isologous interfaces (AA
and BB), and one heterologous interface (AB). The ener-
gies of the three interfaces EAA, EBB , and EAB , depend
on the sequences of residues on the surfaces. Non-surface
residues play no role in this model. A surface is modelled
as a 4×4 array of amino acids. The energy of an interface
is modelled as the sum of the 16 pairwise interactions be-
tween amino acids that are formed when two surfaces are

FIG. 1: Model of a protein with two opposing surfaces, A
and B, that may interact, shown as blue and red, respec-
tively. There are 16 amino acids on each surface. Interface
energy is determined by the sum of the energies of the 16
pairwise contacts that are formed when the two surfaces are
brought together, as indicated by arrows. (a) An AA inter-
face is shown with the two proteins in the same rotational
configuration. (b) An AA interface in which one protein has
been rotated by 90o. The energy EAA of the AA interface
is defined as the lowest energy of the four possible rotations.
(c) When proteins aggregate in different configurations, the
energy of the multimer is given by the sum of the energies of
all the interfaces in the multimer structure.

brought together (see Fig. 1). We consider four possible
90o rotations of two surfaces. The three energies EAA,
EBB , and EAB are defined to be the lowest of the four
energies that arise from the four possible rotations.

The square array of 16 amino acids is used for con-
venience because we require a simple model for which
energies can be calculated for hundreds of thousands of
protein sequences during evolutionary simulations. How-
ever, the fact that we consider the lowest energy of the
multiple rotations of the two surfaces is an important fea-
ture of the model. When two identical proteins form an
isologous interface, each pairwise interaction between the
two surfaces is present twice. This means that the vari-
ance of the energy of the interface is twice what it would
be for an interface between two independent proteins
with the same number of amino acid contacts. The rel-
evant interaction energy controlling binding of two pro-
teins is the lowest energy of the rotational configurations
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possible when they are brought into contact. As the dis-
tribution of energies is broader for homodimers than he-
terdimers, the lowest energy tends to be lower [14, 15].
This contributes to the excess of interactions between
identical proteins and between closely related paralogs
that is observed in the analysis of protein-protein inter-
action networks [16, 17]. This factor is relevant here,
because we wish to consider relative probabilities of ag-
gregation of multimer proteins in configurations that can
involve either isologous or heterologous interfaces. If we
simplified our model further by allowing only one rota-
tional configuration, we would lose this effect.

As we wish to distinguish strongly and weakly inter-
acting surfaces, it is useful to define the A surface such
that the AA interface is stronger than the BB interface,
i.e. EAA ≤ EBB (negative energies denote favourable
interactions). For each amino acid sequence considered,
we simply relabel the A and B surfaces if necessary, so
that this condition is true.

We use a simple model of pairwise contact energies be-
cause we wish to study evolution of large numbers of pro-
tein sequences using a model where the fitness depends
on the energies of the surface interactions (as described in
Section III). Thus, it is necessary to be able to evaluate
the surface energies of any given sequence very rapidly,
which could not be done if a more realistic, three dimen-
sional model of a protein surface was used (for example,
as in [18–20]). Although pairwise amino acid potentials
leave out many details (e.g. water and ion-mediated in-
teractions, local flexibility of proteins, and the atomic
structure of each residue), they have proved to be use-
ful in many ways. The frequently-cited early work of
Miyazawa and Jernigan [21] used the frequencies of con-
tacts between amino acid pairs in globular protein struc-
tures to construct an effective pair potential matrix. This
matrix has continued to be used in many applications
such as coarse-grained simulations of protein complexes
[22, 23], and is also used as a basis of a recent structural
models of rates of amino acid substitutions [24–26].

Interactions between solvent and amino acids were not
included originally [21], but Betancourt and Thirumalai
[27] showed that this could be accounted for by shifting
the elements relative to the amino acid threonine. The
original matrix would not be suitable for our study here,
because all the energies are negative, meaning all ran-
dom surfaces would be attractive. This is not true in the
transformed matrix, which has both positive and nega-
tive elements. The transformed matrix, Bij , is shown in
the Supplementary Table 1. It captures the fact that the
interactions between pairs of hydrophobic amino acids
are substantially negative, and those between hydropho-
bic and polar, or between two polar residues are, on-
average, weaker, and can be either positive or negative. It
also captures specific features such as attractions and re-
pulsions between charged amino acids. As a concrete ex-
ample, this matrix has been successfully used in a study
of protein folding in the GroEL cavity [28].

It should also be noted that the Bij matrix we use is

derived from contact frequencies within globular protein
structures, not from specific frequencies of amino acids
at surfaces and interfaces. It is therefore essentially inde-
pendent of data on interfaces propensities. We will show
here that use of this energy matrix in our model leads
to useful predictions on interface propensities that cor-
relate with experimental observations. These predictions
are non-circular, whereas they would be if we had used
statistical potentials derived from surface data.

III. CALCULATION OF AGGREGATION
PROBABILITIES

For any given sequence of surface residues, we calculate
the interface energies as in Section II. We then use the
interface energies to calculate the probabilities of protein-
protein interactions. We consider a solution of a single
kind of protein with total concentration φ moles per unit
volume. We determine the equilibrium concentration of
monomers c, and of aggregates of n subunits, Cn, in the
following way.

For each of the three types of interface ij ∈
{AA,AB,BB}, we define

aij =
1

ω
e−βEij , (1)

where ω is the number of possible orientational configu-
rations of one protein relative to its neighbour. For the
simple cubic lattice considered here, ω = 24, which is
the number of possible orientations of a cubic object on
a cubic lattice. In the calculations below, the statistical
weight of an interface of type ij is given by aijc/c0, where
c0 = 1 M is the reference concentration.

The concentrations of the different possible aggregates
can be calculated by considering formation of chains that
grow from one end only. If chains grow from both ends,
or if chains can aggregate with other chains (rather than
just chains with monomers), this does not alter the equi-
librium frequencies of the different aggregates. Therefore
we give the simplest case of the calculation here, which
allows growth one monomer at a time from one end only.

Letting Cn(A) and Cn(B) denote the equilibrium con-
centrations of a chain of length n, with the A or the B face
exposed at the growing end, the equilibrium concentra-
tions can be calculated using a transfer matrix method:(

Cn (A)
Cn (B)

)
= (c/c0)

(
aAB aBB
aAA aAB

)(
Cn−1 (A)
Cn−1 (B)

)
. (2)

We define C1(A) = C1(B) = c/2, so that the sum of
the two orientations is equal to the total free monomer
concentration, c. The eigenvalues of the transfer ma-
trix, a, are given by: λ± = aAB ±

√
aAAaBB , and from

these, the abundance of chains of length n, given by
Cn = Cn(A) + Cn(B), can be obtained as:

Cn
c0

=

(
c

c0

)n [
A+λ

n−1
+ −A−λ

n−1
−
]
, (3)
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where

A± =
aAA + aBB ± 2

√
aAAaBB

4
√
aAAaBB

. (4)

For example, it is easily verified from Eq. 3 that for
n = 2, the dimer concentration is

C2

c0
=

1

2

(
c

c0

)2

(aAA + 2aAB + aBB) , (5)

where the terms for the two dimer configurations with
isologous interfaces and the two orientations of the dimer
with the heterologous interface can be clearly seen.

The concentration of monomers, c, can now be deter-
mined. The concentration of proteins in clusters of size
n is given by φn = nCn. The total protein subunit con-
centration is φ =

∑
n φn. This sum gives an equation

from which the free monomer concentration, c, can be
calculated:

φ

c0
=

A+(c/c0)

(1− λ+ c/c0)
2 −

A−(c/c0)

(1− λ− c/c0)
2 . (6)

There is always a single solution to Eq. 6 in the physical
range where 0 < c < φ.

The probability of a subunit being present in an n-
mer is Pn = φn/φ. The fractions of proteins present
as monomers and dimers are P1 and P2. We refer to all
aggregates of 3 or more units as fibrils, hence the fraction
of proteins in fibrils is Pfib =

∑
n≥3 Pn. In some cases

we wish to distinguish closed dimers with the strong AA
interface from other dimers. The fraction of proteins in
closed dimers is

P ∗
2 = P2

aAA
aAA + aBB + 2aAB

. (7)

Likewise, in other cases, we wish to distinguish oriented
fibrils containing only AB interfaces from general fibrils
containing mixtures of all three types of interface. The
concentration of proteins in oriented fibrils of length n is

φorin =
ncna

(n−1)
AB

c0(n−1)
, (8)

and the fraction of proteins in oriented fibrils is

Pori =
1

φ

∑
n≥3

φorin . (9)

IV. EVOLUTIONARY COMPUTATIONS

We now consider the evolution of proteins whose in-
teractions are described by the statistical physics model
above. We consider a population of individuals, each
with a gene for the protein in question. The fitness of
an individual is a function of the protein sequence. If
mutation is weak in comparison to selection, as we will

assume below, there is a dominant variant of the protein
in the population at any one time, and occasionally a
new variant spreads through the population and replaces
the old one. We would like to calculate the long-term
steady state frequencies of sequences in the ensemble of
sequences generated by this evolutionary process.

We consider protein sequences evolving under a muta-
tional model in which the rate of mutation from amino
acid i to j is rij = uπj , where u is a rate constant and
πj is the steady state frequency of amino acid j under
the mutational process. For simplicity, we deal with mu-
tations at the level of the protein sequence, and do not
consider the underlying DNA. In the neutral case, pro-
tein sequences evolve under the influence of mutation,
and there is no selection. Let fmutk be the steady state
frequency of sequence k under mutation. We consider
the simplest case where all 20 amino acids have equal
frequency (πj = 0.05 for all j). Hence there are 2032

possible amino acid sequences, each with steady state
frequency fmutk = (0.05)32.

We define the fitness of a sequence as w = 1+s, where
positive and negative values of the selection coefficient, s,
denote advantageous or deleterious sequences, and s = 0
for neutral variants. For any amino acid sequence, we
assume that s is a function of the multimer configura-
tion probabilities Pn for that sequence. We consider
several choices of fitness functions: (i) a neutral case,
where s = 0 for every sequence; (ii) positive selection in
favour of dimer formation, where s = σP ∗

2 ; (iii) selection
against fibril formation, where s = −σPfib; (iv) selection
in favour of fibril formation, where s = σPfib; and se-
lection in favour of oriented fibrils containing only AB
interfaces, where s = σPori. In all these cases, σ is a pos-
itive constant that determines the strength of selection.

In order to calculate the steady state frequencies of
sequences in the presence of selection as well as mutation,
we assume that mutations are rare enough so that only
one mutation is segregating at a time in the same gene.
This is a common approximation in population genetics
that allows analytical progress in a simple way. In this
approximation, the stationary frequency of a sequence k
under the influence of selection is weighted by a factor
e2Nes(k) relative to the case with no selection [29, 30],
where s(k) is the selection coefficient for this sequence
and Ne is the effective population size. The frequency of
sequence k under selection and mutation is

fselk =
fmutk e2Nes(k)∑
j f

mut
j e2Nes(j)

. (10)

The practical issue with Eq. 10 is the exponential num-
ber of sequences in the sum. It is not possible to exhaus-
tively consider all 2032 sequences. We therefore use a
Markov Chain Monte Carlo (MCMC) sampling method
that generates a large sample of representative protein se-
quences, such that the probability of any sequence arising
in the sample is proportional to its steady state frequency.
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The average properties of the full ensemble are closely ap-
proximated by the simple mean of the properties of the
sequences in the sample.

The MCMC simulations begin with a random sequence
of 32 amino acids. We then generate a descendant se-
quence via replication with mutation. The probability
that an amino acid i in the parent is replaced by j in
the descendant is rij . The probability that the amino
acid remains unchanged is rii = 1 −

∑
j rij . The value

of u is not critical, as it does not influence steady state
frequencies. We found u = 0.05 to allow efficient ex-
ploration of the sequence space. If there is no selection,
then every descendant sequence is accepted into the sam-
ple, and the method generates a sample with frequencies
proportional to fmutk . If selection is acting, we accept
or reject the descendant according to its fitness. Let
the current sequence be k1 and the descendant be k2,
and let the selection coefficients for these sequences be
s(k1) and s(k2). The difference in fitness between the
sequences is ∆s = s(k2) − s(k1). To insure that the fre-
quency of any sequence k in the sample is proportional
to fmutk e2Nes(k), as is required, the ratio of acceptance
of mutations that increase and decrease fitness must be
e2Ne∆s. Our MCMC algorithm does this in the simplest
way: it accepts the new sequence with probability 1, if ∆s
is positive, and with probability e2Ne∆s, if ∆s is negative.
If the new sequence is rejected, a second copy of the old
sequence goes into the sample. This method is equivalent
to the Metropolis algorithm used for Boltzmann-weighted
sampling in physics. We also note that a similar method
of evolutionary simulation was used in another model of
protein evolution [31] in which the fitness of a sequence
depends on its folding ability and its affinity to another
target model.

V. PHENOTYPE DISTRIBUTIONS

The two most useful quantities to summarize the phe-
notype of a sequence are the frequency of AA dimers,
P ∗

2 , and the frequency of fibrils, Pfib. Fig 2(a) shows
the distribution of a sample of sequences generated by
the MCMC evolutionary simulation in the neutral case
with a total concentration φ = 0.01M . The MCMC rou-
tine ran for 300000 generations, and the first 5000 were
discarded to allow for equilibration. As all sequences
have equal frequency under this mutational model when
there is no selection, the sequences generated are simply
random amino acid sequences. The figure shows that se-
quences are spread over a broad range of P ∗

2 and Pfib.
Sequences close to the origin (where P ∗

2 and Pfib are close
to zero) exist mostly as monomers (P1 is close to 1). Se-
quences in the bottom right corner are mostly dimers.
Sequences in the top corner are mostly fibrils. It can be
seen, however, that strong fibril formers are rare under
neutral evolution at this concentration. Thus, no points
are found very close to the top corner in Fig 2a. The
mean values of these probabilities for all sequences in the

sample are 〈P ∗
2 〉 = 0.04 and 〈Pfib〉 = 0.003. Thus, typical

sequences are usually monomers.

!
!
!
!

(a) 

(b) 

(c) 

FIG. 2: Phenotype distribution in the space P ∗
2 versus Pfib for

samples of sequences arising under evolution using the MCMC
method. (a) neutral, (b) selection for dimers (Neσ = 25), (c)
selection for fibrils (Neσ = 25). For each of these plots, the
red symbol denotes the mean value of P ∗

2 and Pfib for all the
sequences in the sample.

Figs 2(b) and 2(c) show the way the phenotype dis-
tribution shifts when selection is applied for dimers and
for fibrils. When selection is applied for dimers, the dis-
tribution shifts close to the bottom right corner, with
〈P ∗

2 〉 = 0.89 and 〈Pfib〉 = 0.01. When selection is ap-
plied for fibrils, the distribution shifts close to the top
corner, with 〈P ∗

2 〉 = 0.04 and 〈Pfib〉 = 0.90. This means
that sequences that are either very strong fibril-formers
or very strong dimer-formers are possible in this model,
and that they arise easily when selection favours them.
Nevertheless, they are relatively rare compared to the
large number of random sequences with weaker interface
interactions, so they do not arise frequently in the mix-
ture of random sequences generated under neutral evolu-
tion.
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Sequence Description EAA/kT EBB/kT EAB/kT

A Monomer -2.68 -2.32 -2.80

B Dimer-former -12.06 -3.14 -5.25

C Strong dimer-former -15.82 -0.60 -2.80

D Fibril former -9.08 -8.67 -5.68

E Strong fibril-former -12.28 -12.06 -12.01

F Oriented fibril-former -4.53 -4.52 -8.18

TABLE I: Energies of the three interfaces for example se-
quences A-F discussed in Figures 3 and 4.

To illustrate the range of behaviors shown by individ-
ual sequences, we chose the six example sequences A-F
described in Table I. For each of these sequences, the dis-
tribution of n-mer probabilities, Pn, is shown in Fig. 3 at
concentration φ = 0.01M . This value is consistent with
cellular concentrations of the enzymes that are present at
the highest quantities in cells, as these are the ones for
which aggregation is most relevant. Various mechanisms
of subcellular protein localization would additionally en-
hance their concentrations [32–34].

The probabilities Pn change significantly as the con-
centration is varied. The changes with concentration can
be illustrated as trajectories in the P ∗

2 versus Pfib trian-
gle. Fig 4 shows the trajectories for sequences A-F as
the concentration is increased from 10−6 M to 1 M. All
sequences begin at the origin (all monomers) for low con-
centration and eventually move towards the fibril corner
for very high concentration. Dimer-forming sequences
approach the dimer corner at intermediate concentra-
tions. The concentration φ = 0.01 M, which was used
in Fig. 3 is shown as red diamonds in Fig 4. Extreme
concentrations higher than this are included in order to
illustrate the predictions of the model. The highest con-
centration point is 1 M, shown as a purple triangles.

Sequence A is a typical sequence chosen randomly from
the sample generated by the neutral simulation (Fig. 2a).
The energies of all three interfaces are weak; hence, this
sequence is almost entirely monomers at φ = 0.01 M (see
Fig. 3A). The trajectory does not move close to the dimer
corner at any concentration, and it is still not close to the
fibril corner, even at φ = 1 M.

Sequence B is a dimer-former found in the neutral sam-
ple. It is the sequence with the highest P ∗

2 in Fig. 2a.
This sequence is mostly a dimer at φ = 0.01 M (see
Fig. 3B), and gradually becomes a fibril at concentra-
tions higher than this. Sequence B forms dimers because
the AA interface is strong. EAA is much lower than the
other two energies (see Table 1).

Sequence C is a strong dimer-former found in the
sample generated under selection for dimer formation
(Fig. 2b). It is almost entirely a dimer at the reference
concentration, and remains very close to the dimer cor-
ner even at φ = 1 M. The AA interface is even stronger
than for Sequence B.

Sequence D is a fibril-former found in the neutral sam-

ple. All three interface energies are fairly strong. This
sequence has Pfib = 0.61 at φ = 0.01 M, which is the
highest in Fig. 2a, and the distribution of Pn has signif-
icant weight at larger n. Sequence E is a strong fibril-
former found in the sample of sequences selected for fib-
ril formation (Fig. 2c). All three interface energies are
very strong. This sequence has Pfib close to 1 already at
φ = 0.01 M.

Sequence F is a fairly strong fibril-former found in the
neutral sample, which has Pfib = 0.44 at φ = 0.01 M. It
differs from the other fibril-formers (D and E) in that the
heterologous interface energy EAB is much lower than the
others. This means that it forms mostly oriented fibrils.
The frequency of closed AA dimers, P ∗

2 is very low at
all concentrations, hence the trajectory in Fig 4, moves
almost along the Pfib axis.

VI. PROPERTIES OF PROTEIN INTERFACES

Fig 5 shows the mean energies of the three possible in-
terfaces for random sequences evolving neutrally (shown
as horizontal lines) and compares these with the mean en-
ergies for sequences generated under four differend kinds
of selection (shown as points). It can be seen that for
neutral evolution, EAA is significantly lower than EBB
even though the sequences are random. This occurs by
definition, because we have labelled the surfaces A and B
for each sequence such that A forms the stronger inter-
face of the two. The heterologous interface energy EAB
is intermediate between the two isologous interface ener-
gies. All three energies are negative because the mean
interaction energy of random amino acid pairs (from the
Bij matrix in Supplementary Table 1) is slightly negative:
〈Bij〉 = −0.057. The mean energy for an interface of 16
random pairs is therefore -0.912. The average energies of
the three kinds of interface under neutral evolution are
all lower than this because we consider four rotations of
the two surfaces, as shown in Fig 1, and take the lowest
of these to define the energy of the interface.

Fig 5 illustrates the way the energies of the interfaces
change when selection is applied. In the case of selection
for dimers, EAA decreases substantially with respect to
the neutral case, as we would expect, because we are se-
lecting for sequences with high P ∗

2 . It can be seen that
EBB actually increases slightly with respect to the neu-
tral case. It is important that the BB interface should
remain weak, because if both AA and BB interfaces be-
come strong, the sequence will form fibrils with proteins
in alternating directions.

The second column in Fig 5 illustrates the case of se-
lection against fibrils. We were interested in this case be-
cause we expect that uncontrolled fibril formation should
be harmful to the cell. Selection against fibrils eliminates
the rare sequences with high Pfib from the neutral phe-
notype distribution, but since these sequences are rare,
and since the mean value of Pfib in the neutral case is
already very low, selection against fibrils has only a small
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FIG. 3: Histograms of Pn for six example sequences illustrating different behaviors at φ = 0.01 M. Panels A-F refer to the six
sequences described in Table I.

effect on the mean energies of the interfaces. It can be
seen that all three energies increase slightly with respect
to their neutral values, making all kinds of multimers and
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• A (Orange) = Random sequence from neutral case [-2.68 -2.32 -2.80] 
• B (Blue) = Strongest dimer former from neutral case [-12.06 -3.14 -5.25] 
• C (Black) = Strong dimer former from selection for dimers [-15.82 -0.60 -2.80] 
• D (Yellow) = Strongest fibril former from neutral case [-9.08 -8.67 -5.68] 
• E (Grey) = Strong fibril former from selection for fibrils [-12.24 -12.06 -12.01] 
• F (Green) = Oriented fibril from neutral case [-4.53 -4.52 -8.18]  
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FIG. 4: Plot showing trajectories in the space P ∗
2 v. Pfib for

the six sequences A-F in Table I. The concentration varies
from φ = 10−6 M to 1 M, with the reference concentration
φ = 0.01M labelled as a red diamond, and the highest con-
centration φ = 1M labelled as a purple triangle.
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FIG. 5: Comparison of the mean energies of the three possible
interfaces for random sequences evolving neutrally (shown as
horizontal lines) with sequences generated under four differ-
end kinds of selection (shown as points). Blue lines and circles
EAA; Red lines and squares EBB ; Black lines and stars EAB .

fibrils less frequent.

There are some proteins whose function requires fibril
formation, such as actin and tubulin. Therefore we also
considered the case when selection acts for fibrils. In
this case all three interface energies become much lower
than the neutral values. It can be seen that EAA and
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EBB decrease more than EAB , meaning that the orien-
tation of proteins in these fibrils will be rather random,
but there will be relatively few heterologous interfaces.
In section III, we defined Pori, the fraction of proteins in
oriented fibrils. For the case where selection is for fib-
rils of all kinds, we find 〈Pori〉 is only 0.05, even though
〈Pfib〉, which includes fibrils with proteins in all possi-
ble arrangements, is 0.90. In contrast, the fourth case in
Fig 5 shows selection for oriented fibrils only. In this case
EAB decreases much more than EAA and EBB . Hence,
most interfaces will be heterologous. In this case we find
〈Pfib〉 is also 0.90, but 〈Pori〉 is 0.87, meaning that almost
all the fibrils are oriented.

Taken together, these results show that this model of
protein interfaces is quite versatile. It allows selection for
both increased or decreased strength of interfaces, and it
allows separate selection for either heterologous interfaces
(as in the case of dimers) or isologous interfaces (as in the
case of oriented fibrils).

VII. INTERFACE PROPENSITIES OF AMINO
ACIDS

Our model allows us to study the way that the fre-
quencies of amino acids at interfaces vary with respect
to the frequencies that would be expected under random
mutation. The propensities of the amino acids to occur
at interfaces have been measured in real proteins (Jones
and Thornton [35]; Levy et al. [36]). In this section, we
show that our 20-amino acid model generates interface
propensities that are similar to these.

We generated 2×107 random sequences of amino acids
on the A and B surfaces. We calculated EAA and EBB ,
if necessary relabelling A and B so that A is the stronger
interface. We measured the frequencies pA and pB of
amino acids on each surface, relative to the expected fre-
quency under neutral mutations, πi = 0.05. These are
shown in Fig 6, and the data is given in Supplementary
Table 2. When we compare pairs of interfaces in this
way, and distinguish the stronger from the weaker, the
frequencies of amino acids on the two surfaces are differ-
ent, even though the average frequency on both surfaces
has to be equal for all amino acids. Hence, in the figure,
we see that pA can be significantly higher or lower than
pB for many of the amino acids, even though the average
of pA and pB has to be 1 for every amino acid.

From these probabilities, we define an interface
propensity for each amino acid as

Sint = ln(pA/pB). (11)

This score is positive for amino acids that have increased
frequency at strong interfaces, and negative for those that
have decreased frequency.

The Sint scores are related to the energies in the Bij
matrix, as shown in Fig. 7(a). We define Bself as the
self interaction energy of the amino acid (the diagonal

FIG. 6: Relative amino acid frequencies at the A surface (pA,
blue) and the B surface (pB , red) for neutrally evolving pro-
teins. The frequencies are not equal on the two surfaces be-
cause the A and B surfaces have been defined as the stronger
and weaker of the two, respectively.

element Bii of the matrix), and Bave as the mean of the
interaction of one amino acid with the 20 possible part-
ners. The more negative Bself and Bave, the higher the
interface propensity. The data are given in Supplemen-
tary Table 2. The correlation coefficients r and the p
values for the t-test of correlation are given in the cap-
tion and in Supplementary Table 3. These correlations
are highly significant, and the correlation with Bave is
stronger than with Bself , as can be seen graphically in
in Fig. 7(a).

The Sint scores are also related to two previous scales
of interface propensities measured from protein structure
data. In Supplementary Table 2, ln(RIP) is the “relative
interface propensity” from [35], and “stickiness” is the
interface propensity scale from [36]. Both of these scales
are derived from the observed frequencies of amino acids
at protein-protein interfaces relative to their frequencies
at non-interacting surfaces. The score from our model,
obtained from the relative frequencies at the A and B
surfaces, is directly comparable to these. Fig. 7(b) shows
that there is a strong positive correlation between Sint
and the two other interface propensities. The correlation
coefficients and t-test parameters are given in Supple-
mentary Table 3, showing that there is highly significant
correlation between all three scores.

This observation tells us that the Bij matrix contains
detailed information about the strengths of interactions
between the different amino acids that is sufficient to
quantitatively predict which amino acids increase or de-
crease in frequency at interfaces. It also tells us some-
thing about why this occurs. Since surface amino acids
interact with other copies of themselves and with all pos-
sible other amino acids at the interface, those which have
the most negative Bself and Bave increase the most in
frequency at the strongly-binding interface.

Fig. 8 and Supplementary Table 4 show the frequen-
cies of amino acids at surfaces A and B in the sets of se-
quences generated by the MCMC sampling method when
selection is present. Selection for dimers (as in Fig. 8a)
accentuates the difference between the A and B surfaces
that is already seen in the neutral case (Fig. 6). In the
dimer case, the hydrophobic amino acids on the left are
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FIG. 7: (a) Correlation of Sint with the self energy Bself and
the average energy Bave of the Bij matrix. (b) Correlation
of Sint with propensities measured in protein data sets. The
correlation coefficients and significance values for these plots
are: Bself , r = −0.836, p = 4.4 × 10−6; Bave, r = −0.966, p =
5.2 × 10−12; ln(RIP), r = 0.850, p = 2.1 × 10−6; stickiness,
r = 0.797, p = 2.6 × 10−5

very much more frequent on the dimer-forming A inter-
face than on the non-interacting B interface, whereas the
hydrophilic amino acids on the right are much more fre-
quent on the non-interacting B interface.

In the case of selection for fibrils, both AA and BB
interfaces become strong. Thus pA and pB both show a
decreasing trend from left to right in Fig. 8b, and there
is not much difference between pA and pB . The case of
selection against fibrils is shown in Supplementary Table
4. The frequencies do not change very much from the
neutral case, because most sequences have a low fibril
forming probability, as we saw previously.

Fig. 8c compares the pA frequencies in the case of se-
lection for dimers, with the pA frequencies in the case
of selection for oriented fibrils. In the dimers case, we
select for isologous AA interfaces, whereas in the case of
oriented fibrils, we select for heterologous AB interfaces.
Comparison of these two shows that amino acids differ
significantly in frequency between isologous and heterol-
ogous interfaces. In particular, it can be seen that Cys
is more frequent at isologous interfaces and the charged
amino acids (Arg, Lys, Glu and Asp) are more frequent
at heterologous interfaces. From this, we define a propen-
sity for amino acids at isologous versus heterologous in-

FIG. 8: (a) Relative amino acid frequencies at the A surface
(pA, blue) and the B surface (pB , red) in the case of selection
for dimers. (b) Same in the case of selection for fibrils. (c)
Relative amino acid frequencies at the A surface of isologous
interfaces in dimers(blue) and the A surface of heterologous
interfaces in oriented fibrils (green).

terfaces as

Siso = ln (pA(dimers)/pA(oriented fibrils)) . (12)

This propensity is highest for Cys, and most negative for
the charged amino acids (see Supplementary Table 4).

This effect occurs because amino acids in isologous in-
terfaces have a significant probability of interacting with
the copy of themselves on the other side of the interface,
whereas amino acids in heterologous interfaces only inter-
act with themselves if there is an independently-evolved
amino acid of the same kind on the other surface. We
define the difference between average and self energies as
∆B = Bave − Bself . We expect amino acids with posi-
tive ∆B to be favoured at isologous interfaces, and vice
versa. Fig. 9(a) shows that there is a highly-significant
correlation of Siso and ∆B. The significance values are
given in the caption and in Supplementary Table 3. From
the Bij matrix in Supplementary Table 1, it can be seen
that Cys has a particularly low value of Bself , presum-
ably reflecting the presence of disulphide bridges in the
data from which the Bij matrix was derived. This results
in a large positve ∆B for Cys. The charged amino acids
have positive values of Bself , presumably due to repul-
sions between like charges. This results in negative ∆B
for the charged amino acids.

It can be seen in Fig. 1b that when there is a 90o rota-
tion of one protein with respect to the other, four of the
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FIG. 9: (a) Correlation of the difference between average
and self energies ∆B = Bave − Bself with the isologous
versus heterologous interface propensity, Siso; (b) Correla-
tion of the relative enrichment of amino acids in isologous
versus heterologous interfaces, ln(REI), found in analysis of
real protein complex structures with Siso obtained from our
model. The correlation coefficients and significance values
for these plots are: ∆B, r = 0.897, p = 8.7 × 10−8; ln(REI),
r = 0.615, p = 3.9 × 10−3;

sixteen amino acids (numbered 1, 6, 11, 16) form pair-
wise contacts with themselves. The same happens in the
270o rotation, but does not happen in the 0o and 180o

rotations. Although some of these details are particular
to the square lattice we are using, the point that amino
acids in isologous interfaces can interact with copies of
themselves is still true in real proteins where there is no
square lattice. For example, the same effect occurs in
the circular patch model used in [14, 15]. Therefore, it
is reasonable to ask whether the systematic difference in
amino acid frequencies between isologous and heterolo-
gous interfaces that we observe in our model also arises
in real proteins. To address this, we performed a system-
atic analysis of the amino acid residues present in the
homomeric interfaces of real protein complex structures
present in the Protein Data Bank.

Starting from a snapshot of all of the structures in
the Protein Data Bank (9-26-2018), all protein residues
present in homomeric interfaces were identified as those
burying any solvent-accessible surface area with an iden-
tical polypeptide chain. Incomplete residues missing any
non-hydrogen atoms from the side chain were excluded.
Isologous interfaces were classified as those where the
correlation between the residue-specific buried surface

area for each subunit in an interacting pair was > 0.7,
as defined previously [42]. Since the dataset of inter-
face residues initially contained data from many proteins
with closely related or identical sequences, we used the
PISCES protein sequence culling server [43] to remove
chains with 90% or greater similarity. This resulted in
a total number of 932,536 interface residues from 18,777
non-redundant chains. The total number of occurrences
of each amino acid was then counted for isologous and
heterologous interfaces, and the proportion was calcu-
lated by dividing by the total number of residues at each
type of interface. Relative enrichment at isologous inter-
faces, REI, was calculated by dividing the proportion of
each amino acid at isologous interfaces by the proportion
at heterologous interfaces (see Supplementary Table 4).

Interestingly, we observe a signficant correlation be-
tween Siso and ln(REI) (see Supplementary Table 3 and
Fig. 9(b)), thus validitating the utility of our simplified
model and demonstrating its power in capturing genuine
sequence differences between the different types of inter-
faces. The deviations between our model and the pat-
tern observed in real structures could be due to a num-
ber of factors. In particular, there are likely to be sys-
tematic differences in the functions of homo-oligomers
with isologous versus heterologous interfaces, as there is
a strong association between symmetry and function [4].
For example, transmembrane channels will be enriched
in heterologous interfaces due to their strong association
with higher-order cyclic symmetry. Thus if the interfaces
of transmembrane proteins tend to differ in amino acid
composition compared to other proteins, this could add
a degree of bias.

VIII. DISCUSSION AND CONCLUSIONS

This work presents a first attempt at a theoretical de-
cription of the evolution of multimers and fibrils. The
pairwise contact-energy matrix that we used is a simple
way of defining interface energies that does not account
for three dimensional structure of surfaces. It was not op-
timized in any way for the present model. We are there-
fore very satisfied that several features of the interface
propensities and the isologous/heterologous propensities
are quite close to those seen in real proteins.

The inevitable presence of hydrophobic residues means
that all proteins will be aggregation prone to some ex-
tent. Hydrophobic residues in the interior are necessary
for proper folding of proteins, and hydrophobic residues
on the surface can lead to formation of functional multi-
meric states. While uncontrolled protein aggregation has
been shown to be associated with an increasing number
of pathological conditions, including human diseases, due
to loss of normal function or gain in toxic activity, fibril
formation can also serve functional roles in cases such as
adhesion and biofilm formation in bacteria [37] and de-
fense against micro-organisms [38]. Cells employ a range
of strategies to control aggregation, at both the sequence
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level (for example, through modulation of aggregation-
prone regions or protein stability), and at the cellular
level (for example, through compartmentalization and
modulation of protein abundance) [39].

With the interaction energies used here, we find that
strongly aggregating proteins will be rare under neutral
evolution at concentrations that are likely to arise in the
cell. This conclusion needs to be treated with caution be-
cause of the simplicity of the interaction energy rules. We
have only considered solutions of a single kind of protein.
It may be possible to extend the model to consider mix-
tures of many kinds of proteins in the future. It should
also be noted that there is a parameter ω for rotational
entropy in equation 1 that is not known with certainty.
Lower values of ω would lead to higher probabilities of
aggregation at any given concentration. Also, we have ar-
bitrarily chosen surfaces with 16 amino acids. Increasing
or decreasing the number of interacting amino acids in a
patch would increase or decrease the strength of interac-
tions, which would also affect the frequency of strongly-
aggregating proteins expected under neutral evolution.

A further caveat is that the evolutionary calculations
were done under the approximation that a single mu-
tation is segregating in the sequence at once, which is
not always true. This could be improved using full-scale
population genetics simulations in the future. It would
also be possible to consider evolution at the DNA level
and determine the portein sequence by translation of the
gene. This would allow us to consider cases where the
steady state frequencies of the amino acids in the pro-
teins and the four nucleotides in the genes are biased by
mutation.

Future extensions of this work include developing this
model to consider other multimer structures, such as
cyclic and dihedral tetramers, by allowing more than two
sticky faces on each protein, or by considering proteins
with two sticky faces at an angle of 90o to one another.
An important aim will be to predict the relative frequen-
cies of multimers of different symmetries and different
numbers of subunits, as is tabulated in the “periodic ta-
ble” classification of the protein structure database [40].
Furthermore, as our model is able to predict the way

the multimer structures will change when mutations are
made to the surface residues, we will be able to study
evolution of multimer structures over time in a family of
related species, and compare this with studies of struc-
tural evolution [41]. The present approach therefore in-
troduces a method from which a wide range of new de-
velopments will be possible for the study of the evolution
of higher order protein structure.

IX. SUPPLEMENTARY MATERIAL

The file Supplementary Tables.xlsx contains the data
in the four supplementary tables. The file Supplementary
Table Descriptions.docx contains descriptions of these ta-
bles.
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• A (Orange) = Random sequence from neutral case [-2.68 -2.32 -2.80] 
• B (Blue) = Strongest dimer former from neutral case [-12.06 -3.14 -5.25] 
• C (Black) = Strong dimer former from selection for dimers [-15.82 -0.60 -2.80] 
• D (Yellow) = Strongest fibril former from neutral case [-9.08 -8.67 -5.68] 
• E (Grey) = Strong fibril former from selection for fibrils [-12.24 -12.06 -12.01] 
• F (Green) = Oriented fibril from neutral case [-4.53 -4.52 -8.18]  
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