61 research outputs found

    A pair of pharyngeal gustatory receptor neurons regulates caffeine-dependent ingestion in drosophila larvae

    Get PDF
    The sense of taste is an essential chemosensory modality that enables animals to identify appropriate food sources and control feeding behavior. In particular, the recognition of bitter taste prevents animals from feeding on harmful substances. Feeding is a complex behavior comprised of multiple steps, and food quality is continuously assessed. We here examined the role of pharyngeal gustatory organs in ingestion behavior. As a first step, we constructed a gustatory receptor-to-neuron map of the larval pharyngeal sense organs, and examined corresponding gustatory receptor neuron (GRN) projections in the larval brain. Out of 22 candidate bitter compounds, we found 14 bitter compounds that elicit inhibition of ingestion in a dose- dependent manner. We provide evidence that certain pharyngeal GRNs are necessary and sufficient for the ingestion response of larvae to caffeine. Additionally, we show that a specific pair of pharyngeal GRNs, DP1, responds to caffeine by calcium imaging. In this study we show that a specific pair of GRNs in the pharyngeal sense organs coordinates caffeine sensing with regulation of behavioral responses such as ingestion. Our results indicate that in Drosophila larvae, the pharyngeal GRNs have a major role in sensing food palatability to regulate ingestion behavior. The pharyngeal sense organs are prime candidates to influence ingestion due to their position in the pharynx, and they may act as first level sensors of ingested food

    The Evolutionarily Conserved LIM Homeodomain Protein LIM-4/LHX6 Specifies the Terminal Identity of a Cholinergic and Peptidergic C. elegans Sensory/Inter/Motor Neuron-Type

    Full text link
    The expression of specific transcription factors determines the differentiated features of postmitotic neurons. However, the mechanism by which specific molecules determine neuronal cell fate and the extent to which the functions of transcription factors are conserved in evolution are not fully understood. In C. elegans, the cholinergic and peptidergic SMB sensory/inter/motor neurons innervate muscle quadrants in the head and control the amplitude of sinusoidal movement. Here we show that the LIM homeobox protein LIM-4 determines neuronal characteristics of the SMB neurons. In lim-4 mutant animals, expression of terminal differentiation genes, such as the cholinergic gene battery and the flp-12 neuropeptide gene, is completely abolished and thus the function of the SMB neurons is compromised. LIM-4 activity promotes SMB identity by directly regulating the expression of the SMB marker genes via a distinct cis-regulatory motif. Two human LIM-4 orthologs, LHX6 and LHX8, functionally substitute for LIM-4 in C. elegans. Furthermore, C. elegans LIM-4 or human LHX6 can induce cholinergic and peptidergic characteristics in the human neuronal cell lines. Our results indicate that the evolutionarily conserved LIM-4/LHX6 homeodomain proteins function in generation of precise neuronal subtypes

    Structure/function studies on the K+ dependant Na+/Ca2+ exchanger

    No full text
    Bibliography: p. 173-190Some pages are in colour

    Thermal sensitivity analysis data utilizing Q10 scanning, Boltzmann slope factor and the change of molar heat capacity

    Get PDF
    As a further elaboration of the recently devised Q10 scanning analysis (“Exceptionally high thermal sensitivity of rattlesnake TRPA1 correlates with peak current amplitude” [1]), the interval between current data points at two temperatures was shortened and the resulting parameters representing thermal sensitivities such as peak Q10s and temperature points of major thermosensitivity events are presented for two TRPA1 orthologues from rattlesnakes and boas. In addition, the slope factors from Boltzmann fitting and the change of molar heat capacity of temperature-evoked currents were evaluated and compared as alternative ways of thermal sensitivity appraisal of TRPA1 orthologues. Keywords: Boltzmann slope factor, Q10 scanning, Molar heat capacity, Thermal sensitivity, Infrared, TRPA

    Cdo Regulates Surface Expression of Kir2.1 K+ Channel in Myoblast Differentiation.

    No full text
    A potassium channel Kir2.1-associated membrane hyperpolarization is required for myogenic differentiation. However the molecular regulatory mechanisms modulating Kir2.1 channel activities in early stage of myogenesis are largely unknown. A cell surface protein, Cdo functions as a component of multiprotein cell surface complexes to promote myogenesis. In this study, we report that Cdo forms a complex with Kir2.1 during myogenic differentiation, and is required for the channel activity by enhancing the surface expression of Kir2.1 in the early stage of differentiation. The expression of a constitutively active form of the upstream kinase for p38MAPK, MKK6(EE) can restore Kir2.1 activities in Cdo-depleted C2C12 cells, while the treatment with a p38MAPK inhibitor, SB203580 exhibits a similar effect of Cdo depletion on Kir2.1 surface expression. Furthermore, Cdo-/- primary myoblasts, which display a defective differentiation program, exhibit a defective Kir2.1 activity. Taken together, our results suggest that a promyogenic Cdo signaling is critical for Kir2.1 activities in the induction of myogenic differentiation

    Proprioception, the regulator of motor function

    No full text
    In animals, proper locomotion is crucial to find mates and foods and avoid predators or dangers. Multiple sensory systems detect external and internal cues and integrate them to modulate motor outputs. Proprioception is the internal sense of body position, and proprioceptive control of locomotion is essential to generate and maintain precise patterns of movement or gaits. This proprioceptive feedback system is conserved in many animal species and is mediated by stretch-sensitive receptors called proprioceptors. Recent studies have identified multiple proprioceptive neurons and proprioceptors and their roles in the locomotion of various model organisms. In this review we describe molecular and neuronal mechanisms underlying proprioceptive feedback systems in C. elegans, Drosophila, and mice. © 2021 by the The Korean Society for Biochemistry and Molecular Biology. All Rights Reserved.1

    PDF cells are a GABA-responsive wake-promoting component of the Drosophila sleep circuit

    Get PDF
    SummaryDaily sleep cycles in humans are driven by a complex circuit within which GABAergic sleep-promoting neurons oppose arousal. Drosophila sleep has recently been shown to be controlled by GABA, which acts on unknown cells expressing the Rdl GABAA receptor. We identify here the relevant Rdl-containing cells as PDF-expressing small and large ventral lateral neurons (LNvs) of the circadian clock. LNv activity regulates total sleep as well as the rate of sleep onset; both large and small LNvs are part of the sleep circuit. Flies mutant for pdf or its receptor are hypersomnolent, and PDF acts on the LNvs themselves to control sleep. These features of the Drosophila sleep circuit, GABAergic control of onset and maintenance as well as peptidergic control of arousal, support the idea that features of sleep-circuit architecture as well as the mechanisms governing the behavioral transitions between sleep and wake are conserved between mammals and insects

    Protein arginine methylation facilitates KCNQ channel-PIP2 interaction leading to seizure suppression

    Get PDF
    KCNQ channels are critical determinants of neuronal excitability, thus emerging as a novel target of anti-epileptic drugs. To date, the mechanisms of KCNQ channel modulation have been mostly characterized to be inhibitory via Gq-coupled receptors, Ca2+/CaM, and protein kinase C. Here we demonstrate that methylation of KCNQ by protein arginine methyltransferase 1 (Prmt1) positively regulates KCNQ channel activity, thereby preventing neuronal hyperexcitability. Prmt1 +/-mice exhibit epileptic seizures. Methylation of KCNQ2 channels at 4 arginine residues by Prmt1 enhances PIP2 binding, and Prmt1 depletion lowers PIP2 affinity of KCNQ2 channels and thereby the channel activities. Consistently, exogenous PIP2 addition to Prmt1+/-neurons restores KCNQ currents and neuronal excitability to the WT level. Collectively, we propose that Prmt1-dependent facilitation of KCNQ-PIP2 interaction underlies the positive regulation of KCNQ activity by arginine methylation, which may serve as a key target for prevention of neuronal hyperexcitability and seizures. © Kim et al6711Nsciescopu

    p38MAPK signaling was required for the translocation of Kir2.1 to the plasma membrane.

    No full text
    <p>(A) Current-voltage relationships of inwardly rectifying K<sup>+</sup> (IRK) current of C2C12 cells in the absence (left) or the presence (middle) of SB203580 (2.5 μM). The current density of IRK at -140 mV before or after SB203580 is shown on the right. (B) DMSO (0.25%)- or SB203580-treated C2C12 cells were induced to differentiate for indicated time, and subjected to biotinylation assay. The biotinylated (surface) and non-biotinylated (lysate) protein fractions were blotted with an anti-Kir2.1 antibody. Cadherin was used as a loading control. (C) Confocal immunofluorescence detection of Kir2.1 (green) in DMSO-, or SB203580-treated C2C12 cells after differentiation induction for 6 hours. Cell membrane and nuclei were visualized by pan-Cadherin (red) and DAPI (blue), respectively. The regions of plasma membrane, where cell-cell contact occurs, are indicated with rectangles. The scale bar denotes 10μm. (D) Changes in resting membrane potential (RMP) in Cdo-depleted C2C12 cells with or without MKK6(EE).</p
    corecore