576 research outputs found

    Adverse reactions to metal debris occur with all types of hip replacement not just metal-on-metal hips: a retrospective observational study of 3340 revisions for adverse reactions to metal debris from the National Joint Registry for England, Wales, Northern Ireland and the Isle of Man.

    Get PDF
    BACKGROUND: Adverse reactions to metal debris (ARMD) have resulted in the high short-term failure rates observed with metal-on-metal hip replacements. ARMD has recently been reported in non-metal-on-metal total hip replacements (non-MoM THRs) in a number of small cohort studies. However the true magnitude of this complication in non-MoM THRs remains unknown. We used a nationwide database to determine the risk of ARMD revision in all non-MoM THRs, and compared patient and surgical factors associated with ARMD revision between non-MoM and MoM hips. METHODS: We performed a retrospective observational study using data from the National Joint Registry for England, Wales, Northern Ireland and the Isle of Man. All primary hip replacements undergoing revision surgery for ARMD were included (n = 3,340). ARMD revision risk in non-MoM THRs was compared between different commonly implanted bearing surfaces and femoral head sizes (Chi-squared test). Differences in patient and surgical factors between non-MoM hips and MoM hips revised for ARMD were also analysed (Chi-squared test and unpaired t-test). RESULTS: Of all ARMD revisions, 7.5% (n = 249) had non-MoM bearing surfaces. The relative risk of ARMD revision was 2.35 times (95% CI 1.76-3.11) higher in ceramic-on-ceramic bearings compared with hard-on-soft bearings (0.055 vs. 0.024%; p < 0.001), and 2.80 times (95% CI 1.74-4.36) higher in 36 mm metal-on-polyethylene bearings compared to 28 mm and 32 mm metal-on-polyethylene bearings (0.058 vs. 0.021%; p < 0.001). ARMD revisions were performed earlier in non-MoM hips compared to MoM hips (mean 3.6-years vs. 5.6-years; p < 0.0001). Non-MoM hips had more abnormal findings at revision (63.1 vs. 35.7%; p < 0.001), and more intra-operative adverse events (6.4 vs. 1.6%; p < 0.001) compared to MoM hips. CONCLUSIONS: Although the overall risk of ARMD revision surgery in non-MoM THRs appears low, this risk is increasing, and is significantly higher in ceramic-on-ceramic THRs and 36 mm metal-on-polyethylene THRs. ARMD may therefore represent a significant clinical problem in non-MoM THRs

    Development of an IS change reason - IS change type combination matrix

    Get PDF
    Firms change their information systems (IS) for various reasons, ranging from compliance with government regulations to the development of new capabilities. When making these changes a firm can choose between four different IS change types: IS introduction, IS extension, IS replacement, and IS merger. This paper proposes that change reasons and change types are interrelated, and that certain reason-type combinations are more likely than others to result in a successful IS change. To identify these combinations, an IS change reason–IS change type matrix is developed. While the matrix is created from prior IS research, we conducted a focus group study of IS professionals to further explore and refine the matrix. The findings from the focus group study reveal that some IS change reason–IS change type combinations are more appropriate than others to carry out the IS change project successfully. We also present three examples of IS change projects to illustrate the use and value of the matrix in practice

    Structural Ordering of Disordered Ligand-Binding Loops of Biotin Protein Ligase into Active Conformations as a Consequence of Dehydration

    Get PDF
    Mycobacterium tuberculosis (Mtb), a dreaded pathogen, has a unique cell envelope composed of high fatty acid content that plays a crucial role in its pathogenesis. Acetyl Coenzyme A Carboxylase (ACC), an important enzyme that catalyzes the first reaction of fatty acid biosynthesis, is biotinylated by biotin acetyl-CoA carboxylase ligase (BirA). The ligand-binding loops in all known apo BirAs to date are disordered and attain an ordered structure only after undergoing a conformational change upon ligand-binding. Here, we report that dehydration of Mtb-BirA crystals traps both the apo and active conformations in its asymmetric unit, and for the first time provides structural evidence of such transformation. Recombinant Mtb-BirA was crystallized at room temperature, and diffraction data was collected at 295 K as well as at 120 K. Transfer of crystals to paraffin and paratone-N oil (cryoprotectants) prior to flash-freezing induced lattice shrinkage and enhancement in the resolution of the X-ray diffraction data. Intriguingly, the crystal lattice rearrangement due to shrinkage in the dehydrated Mtb-BirA crystals ensued structural order of otherwise flexible ligand-binding loops L4 and L8 in apo BirA. In addition, crystal dehydration resulted in a shift of ∼3.5 Å in the flexible loop L6, a proline-rich loop unique to Mtb complex as well as around the L11 region. The shift in loop L11 in the C-terminal domain on dehydration emulates the action responsible for the complex formation with its protein ligand biotin carboxyl carrier protein (BCCP) domain of ACCA3. This is contrary to the involvement of loop L14 observed in Pyrococcus horikoshii BirA-BCCP complex. Another interesting feature that emerges from this dehydrated structure is that the two subunits A and B, though related by a noncrystallographic twofold symmetry, assemble into an asymmetric dimer representing the ligand-bound and ligand-free states of the protein, respectively. In-depth analyses of the sequence and the structure also provide answers to the reported lower affinities of Mtb-BirA toward ATP and biotin substrates. This dehydrated crystal structure not only provides key leads to the understanding of the structure/function relationships in the protein in the absence of any ligand-bound structure, but also demonstrates the merit of dehydration of crystals as an inimitable technique to have a glance at proteins in action

    Enhanced resistance to bacterial and fungal pathogens by overexpression of a human cathelicidin antimicrobial peptide (hCAP18/LL-37) in Chinese cabbage

    Get PDF
    The human cathelicidin antimicrobial protein hCAP18, which includes the C-terminal peptide LL-37, is a multifunctional protein. As a possible approach to enhancing the resistance to plant disease, a DNA fragment coding for hCAP18/LL-37 was fused at the C-terminal end of the leader sequence of endopolygalacturonase-inhibiting protein under the control of the cauliflower mosaic virus 35S promoter region. The construct was then introduced into Brassica rapa. LL-37 expression was confirmed in transgenic plants by reverse transcription-polymerase chain reaction and western blot analysis. Transgenic plants exhibited varying levels of resistance to bacterial and fungal pathogens. The average size of disease lesions in the transgenic plants was reduced to less than half of that in wild-type plants. Our results suggest that the antimicrobial LL-37 peptide is involved in wide-spectrum resistance to bacterial and fungal pathogen infection

    Squalamine: An Appropriate Strategy against the Emergence of Multidrug Resistant Gram-Negative Bacteria?

    Get PDF
    We reported that squalamine is a membrane-active molecule that targets the membrane integrity as demonstrated by the ATP release and dye entry. In this context, its activity may depend on the membrane lipid composition. This molecule shows a preserved activity against bacterial pathogens presenting a noticeable multi-resistance phenotype against antibiotics such as polymyxin B. In this context and because of its structure, action and its relative insensitivity to efflux resistance mechanisms, we have demonstrated that squalamine appears as an alternate way to combat MDR pathogens and by pass the gap regarding the failure of new active antibacterial molecules

    Music-aided affective interaction between human and service robot

    Get PDF
    This study proposes a music-aided framework for affective interaction of service robots with humans. The framework consists of three systems, respectively, for perception, memory, and expression on the basis of the human brain mechanism. We propose a novel approach to identify human emotions in the perception system. The conventional approaches use speech and facial expressions as representative bimodal indicators for emotion recognition. But, our approach uses the mood of music as a supplementary indicator to more correctly determine emotions along with speech and facial expressions. For multimodal emotion recognition, we propose an effective decision criterion using records of bimodal recognition results relevant to the musical mood. The memory and expression systems also utilize musical data to provide natural and affective reactions to human emotions. For evaluation of our approach, we simulated the proposed human-robot interaction with a service robot, iRobiQ. Our perception system exhibited superior performance over the conventional approach, and most human participants noted favorable reactions toward the music-aided affective interaction.open0

    Shared neural representations of tactile roughness intensities by somatosensation and touch observation using an associative learning method

    Get PDF
    Previous human fMRI studies have reported activation of somatosensory areas not only during actual touch, but also during touch observation. However, it has remained unclear how the brain encodes visually evoked tactile intensities. Using an associative learning method, we investigated neural representations of roughness intensities evoked by (a) tactile explorations and (b) visual observation of tactile explorations. Moreover, we explored (c) modality-independent neural representations of roughness intensities using a cross-modal classification method. Case (a) showed significant decoding performance in the anterior cingulate cortex (ACC) and the supramarginal gyrus (SMG), while in the case (b), the bilateral posterior parietal cortices, the inferior occipital gyrus, and the primary motor cortex were identified. Case (c) observed shared neural activity patterns in the bilateral insula, the SMG, and the ACC. Interestingly, the insular cortices were identified only from the cross-modal classification, suggesting their potential role in modality-independent tactile processing. We further examined correlations of confusion patterns between behavioral and neural similarity matrices for each region. Significant correlations were found solely in the SMG, reflecting a close relationship between neural activities of SMG and roughness intensity perception. The present findings may deepen our understanding of the brain mechanisms underlying intensity perception of tactile roughness
    corecore