544 research outputs found

    Comparing the immune response to a novel intranasal nanoparticle PLGA vaccine and a commercial BPI3V vaccine in dairy calves

    Get PDF
    peer-reviewedBackground There is a need to improve vaccination against respiratory pathogens in calves by stimulation of local immunity at the site of pathogen entry at an early stage in life. Ideally such a vaccine preparation would not be inhibited by the maternally derived antibodies. Additionally, localized immune response at the site of infection is also crucial to control infection at the site of entry of virus. The present study investigated the response to an intranasal bovine parainfluenza 3 virus (BPI3V) antigen preparation encapsulated in PLGA (poly dl-lactic-co-glycolide) nanoparticles in the presence of pre-existing anti-BPI3V antibodies in young calves and comparing it to a commercially available BPI3V respiratory vaccine. Results There was a significant (P < 0.05) increase in BPI3V-specific IgA in the nasal mucus of the BPI3V nanoparticle vaccine group alone. Following administration of the nanoparticle vaccine an early immune response was induced that continued to grow until the end of study and was not observed in the other treatment groups. Virus specific serum IgG response to both the nanoparticle vaccine and commercial live attenuated vaccine showed a significant (P < 0.05) rise over the period of study. However, theΒ cell mediated immune response observed didn’t show any significant rise in any of the treatment groups. Conclusion Calves administered theΒ intranasal nanoparticle vaccine induced significantly greater mucosal IgA responses, compared to the other treatment groups. This suggests an enhanced, sustained mucosal-based immunological response to the BPI3V nanoparticle vaccine in the face of pre-existing antibodies to BPI3V, which are encouraging and potentially useful characteristics of a candidate vaccine. However, ability of nanoparticle vaccine in eliciting cell mediated immune response needs further investigation. More sustained local mucosal immunity induced by nanoparticle vaccine has obvious potential if it translates into enhanced protective immunity in the face of virus outbreak

    ASB9 interacts with ubiquitous mitochondrial creatine kinase and inhibits mitochondrial function

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The ankyrin repeat and suppressor of cytokine signalling (SOCS) box proteins (Asbs) are a large protein family implicated in diverse biological processes including regulation of proliferation and differentiation. The SOCS box of Asb proteins is important in a ubiquitination-mediated proteolysis pathway. Here, we aimed to evaluate expression and function of human Asb-9 (ASB9).</p> <p>Results</p> <p>We found that a variant of ASB9 that lacks the SOCS box (ASB9Ξ”SOCS) was naturally detected in human cell lines but not in peripheral blood mononuclear cells or normal hepatocytes. We also identified ubiquitous mitochondrial creatine kinase (uMtCK) as a new target of ASB9 in human embryonic kidney 293 (HEK293) cells. The ankyrin repeat domains of ASB9 can associate with the substrate binding site of uMtCK in a SOCS box-independent manner. The overexpression of ASB9, but not ASB9Ξ”SOCS, induces ubiquitination of uMtCK. ASB9 and ASB9Ξ”SOCS can interact and colocalise with uMtCK in the mitochondria. However, only expression of ASB9 induced abnormal mitochondrial structure and a decrease of mitochondrial membrane potential. Furthermore, the creatine kinase activities and cell growth were significantly reduced by ASB9 but not by ASB9Ξ”SOCS.</p> <p>Conclusions</p> <p>ASB9 interacts with the creatine kinase system and negatively regulates cell growth. The differential expression and function of ASB9 and ASB9Ξ”SOCS may be a key factor in the growth of human cell lines and primary cells.</p

    MALDI-TOF MS Enables the Rapid Identification of the Major Molecular Types within the Cryptococcus neoformans/C. gattii Species Complex

    Get PDF
    BACKGROUND: The Cryptococcus neoformans/C. gattii species complex comprises two sibling species that are divided into eight major molecular types, C. neoformans VNI to VNIV and C. gattii VGI to VGIV. These genotypes differ in host range, epidemiology, virulence, antifungal susceptibility and geographic distribution. The currently used phenotypic and molecular identification methods for the species/molecular types are time consuming and expensive. As Matrix-Assisted Laser Desorption Ionization-Time-of-Flight Mass Spectrometry (MALDI-TOF MS) offers an effective alternative for the rapid identification of microorganisms, the objective of this study was to examine its potential for the identification of C. neoformans and C. gattii strains at the intra- and inter-species level. METHODOLOGY: Protein extracts obtained via the formic acid extraction method of 164 C. neoformans/C. gattii isolates, including four inter-species hybrids, were studied. RESULTS: The obtained mass spectra correctly identified 100% of all studied isolates, grouped each isolate according to the currently recognized species, C. neoformans and C. gattii, and detected potential hybrids. In addition, all isolates were clearly separated according to their major molecular type, generating greater spectral differences among the C. neoformans molecular types than the C. gattii molecular types, most likely reflecting a closer phylogenetic relationship between the latter. The number of colonies used and the incubation length did not affect the results. No spectra were obtained from intact yeast cells. An extended validated spectral library containing spectra of all eight major molecular types was established. CONCLUSIONS: MALDI-TOF MS is a rapid identification tool for the correct recognition of the two currently recognized human pathogenic Cryptococcus species and offers a simple method for the separation of the eight major molecular types and the detection of hybrid strains within this species complex in the clinical laboratory. The obtained mass spectra provide further evidence that the major molecular types warrant variety or even species status

    A transcription factor contributes to pathogenesis and virulence in streptococcus pneumoniae

    Get PDF
    To date, the role of transcription factors (TFs) in the progression of disease for many pathogens is yet to be studied in detail. This is probably due to transient, and generally low expression levels of TFs, which are the central components controlling the expression of many genes during the course of infection. However, a small change in the expression or specificity of a TF can radically alter gene expression. In this study, we combined a number of quality-based selection strategies including structural prediction of modulated genes, gene ontology and network analysis, to predict the regulatory mechanisms underlying pathogenesis of Streptococcus pneumoniae (the pneumococcus). We have identified two TFs (SP_0676 and SP_0927 [SmrC]) that might control tissue-specific gene expression during pneumococcal translocation from the nasopharynx to lungs, to blood and then to brain of mice. Targeted mutagenesis and mouse models of infection confirmed the role of SP_0927 in pathogenesis and virulence, and suggests that SP_0676 might be essential to pneumococcal viability. These findings provide fundamental new insights into virulence gene expression and regulation during pathogenesis.Layla K. Mahdi, Esmaeil Ebrahimie, David L. Adelson, James C. Paton, Abiodun D. Ogunniy

    Clinicopathologic significance of HIF-1Ξ±, p53, and VEGF expression and preoperative serum VEGF level in gastric cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hypoxia influences tumor growth by inducing angiogenesis and genetic alterations. Hypoxia-inducible factor 1Ξ± (HIF-1Ξ±), p53, and vascular endothelial growth factor (VEGF) are all important factors in the mechanisms inherent to tumor progression. In this work, we have investigated the clinicopathologic significance of HIF-1Ξ±, p53, and VEGF expression and preoperative serum VEGF (sVEGF) level in gastric cancer.</p> <p>We immunohistochemically assessed the HIF-1Ξ±, p53, and VEGF expression patterns in 114 specimens of gastric cancer. Additionally, we determined the levels of preoperative serum VEGF (sVEGF).</p> <p>Results</p> <p>The positive rates of p53 and HIF-1Ξ± (diffuse, deep, intravascular pattern) were 38.6% and 15.8%, respectively. The VEGF overexpression rate was 57.9%. p53 and HIF-1Ξ± were correlated positively with the depth of invasion (<it>P </it>= 0.015, <it>P </it>= 0.001, respectively). Preoperative sVEGF and p53 levels were correlated significantly with lymph node involvement (<it>P </it>= 0.010, <it>P </it>= 0.040, respectively). VEGF overexpression was more frequently observed in the old age group (β‰₯ 60 years old) and the intestinal type (<it>P </it>= 0.013, <it>P </it>= 0.014, respectively). However, correlations between preoperative sVEGF level and tissue HIF-1Ξ±, VEGF, and p53 were not observed. The median follow-up duration after operation was 24.5 months. HIF-1Ξ± was observed to be a poor prognostic factor of disease recurrence or progression (<it>P </it>= 0.002).</p> <p>Conclusion</p> <p>p53, HIF-1Ξ± and preoperative sVEGF might be markers of depth of invasion or lymph node involvement. HIF-1Ξ± expression was a poor prognostic factor of disease recurrence or progression in patients with gastric cancers.</p

    Effect of frequency difference on sensitivity of beats perception

    Get PDF
    Two vibrations with slightly different frequencies induce the beats phenomenon. In tactile perception, when two pins of different frequencies stimulate the fingertips, an individual perceives a beats caused by a summation stimulus of the two vibrations. The present study demonstrates experimentally that humans can perceive another vibration based on the beats phenomenon when two tactile stimuli with slightly different frequencies are stimulated on the finger pad with a small contactor in different locations at the same time. Moreover, we examined the amplitude of the detection threshold to be able to perceive beats phenomenon on the index finger with 5 carrier frequency (63.1, 100, 158.5, 251.2, and 398.1Β Hz) and 4 beats frequency (2.5, 3.98, 6.31, and 10Β Hz) when two stimuli 1Β mm distance apart are vibrated at a slightly different frequency. From the experiments, it is concluded that the amplitude threshold to be able to perceive beats decreases as the standard frequency increases under 398Β Hz. Furthermore, from comparing the absolute detection threshold and beats detection threshold, as the carrier frequency increases, the required amplitude at two pins for the detection of beats decreases compared to absolute vibration

    Low diversity Cryptococcus neoformans variety grubii multilocus sequence types from Thailand are consistent with an ancestral African origin.

    Get PDF
    Published versio

    Bicalutamide-induced hypoxia potentiates RUNX2-mediated Bcl-2 expression resulting in apoptosis resistance.

    Get PDF
    BACKGROUND: We have previously shown that hypoxia selects for more invasive, apoptosis-resistant LNCaP prostate cancer cells, with upregulation of the osteogenic transcription factor RUNX2 and the anti-apoptotic factor Bcl-2 detected in the hypoxia-selected cells. Following this observation, we questioned through what biological mechanism this occurs. METHODS: We examined the effect of hypoxia on RUNX2 expression and the role of RUNX2 in the regulation of Bcl-2 and apoptosis resistance in prostate cancer. RESULTS: Hypoxia increased RUNX2 expression in vitro, and bicalutamide-treated LNCaP tumours in mice (previously shown to have increased tumour hypoxia) exhibited increased RUNX2 expression. In addition, RUNX2-overexpressing LNCaP cells showed increased cell viability, following bicalutamide and docetaxel treatment, which was inhibited by RUNX2 siRNA; a range of assays demonstrated that this was due to resistance to apoptosis. RUNX2 expression was associated with increased Bcl-2 levels, and regulation of Bcl-2 by RUNX2 was confirmed through chromatin immunoprecipitation (ChIP) binding and reporter assays. Moreover, a Q-PCR array identified other apoptosis-associated genes upregulated in the RUNX2-overexpressing LNCaP cells. CONCLUSION: This study establishes a contributing mechanism for progression of prostate cancer cells to a more apoptosis-resistant and thus malignant phenotype, whereby increased expression of RUNX2 modulates the expression of apoptosis-associated factors, specifically Bcl-2
    • …
    corecore