67 research outputs found

    The density compression ratio of shock fronts associated with coronal mass ejections

    Full text link
    We present a new method to extract the three-dimensional electron density profile and density compression ratio of shock fronts associated with Coronal Mass Ejections (CMEs) observed in white light coronagraph images. We demonstrate the method with two examples of fast halo CMEs (∼\sim 2000 km s−1^{-1}) observed on 2011 March 7 and 2014 February 25. Our method uses the ellipsoid model to derive the three-dimensional (3D) geometry and kinematics of the fronts. The density profiles of the sheaths are modeled with double-Gaussian functions with four free parameters and the electrons are distributed within thin shells behind the front. The modeled densities are integrated along the lines of sight to be compared with the observed brightness in COR2-A, and a χ2\chi^2 approach is used to obtain the optimal parameters for the Gaussian profiles. The upstream densities are obtained from both the inversion of the brightness in a pre-event image and an empirical model. Then the density ratio and Alfv\'{e}nic Mach number are derived. We find that the density compression peaks around the CME nose, and decreases at larger position angles. The behavior is consistent with a driven shock at the nose and a freely-propagating shock wave at the CME flanks. Interestingly, we find that the supercritical region extends over a large area of the shock and last longer (several tens of minutes) than past reports. It follows that CME shocks are capable of accelerating energetic particles in the corona over extended spatial and temporal scales and are likely responsible for the wide longitudinal distribution of these particles in the inner heliosphere. Our results also demonstrate the power of multi-viewpoint coronagraphic observations and forward modeling in remotely deriving key shock properties in an otherwise inaccessible regime.Comment: Accepted for publication in the Journal of Space Weather and Space Climat

    Deregulation of HDAC5 by Viral Interferon Regulatory Factor 3 Plays an Essential Role in Kaposi's Sarcoma-Associated Herpesvirus-Induced Lymphangiogenesis.

    Get PDF
    Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiologic agent for Kaposi's sarcoma (KS), which is one of the most common HIV-associated neoplasms. The endothelium is the thin layer of squamous cells where vascular blood endothelial cells (BECs) line the interior surface of blood vessels and lymphatic endothelial cells (LECs) are in direct contact with lymphatic vessels. The KS lesions contain a prominent compartment of neoplastic spindle morphology cells that are closely related to LECs. Furthermore, while KSHV can infect both LECs and BECs in vitro, its infection activates genetic programming related to lymphatic endothelial cell fate, suggesting that lymphangiogenic pathways are involved in KSHV infection and malignancy. Here, we report for the first time that viral interferon regulatory factor 3 (vIRF3) is readily detected in over 40% of KS lesions and that vIRF3 functions as a proangiogenic factor, inducing hypersprouting formation and abnormal growth in a LEC-specific manner. Mass spectrometry analysis revealed that vIRF3 interacted with histone deacetylase 5 (HDAC5), which is a signal-responsive regulator for vascular homeostasis. This interaction blocked the phosphorylation-dependent cytosolic translocation of HDAC5 and ultimately altered global gene expression in LECs but not in BECs. Consequently, vIRF3 robustly induced spindle morphology and hypersprouting formation of LECs but not BECs. Finally, KSHV infection led to the hypersprouting formation of LECs, whereas infection with a ΔvIRF3 mutant did not do so. Collectively, our data indicate that vIRF3 alters global gene expression and induces a hypersprouting formation in an HDAC5-binding-dependent and LEC-specific manner, ultimately contributing to KSHV-associated pathogenesis.IMPORTANCE Several lines of evidences indicate that KSHV infection of LECs induces pathological lymphangiogenesis and that the results resemble KS-like spindle morphology. However, the underlying molecular mechanism remains unclear. Here, we demonstrated that KSHV vIRF3 is readily detected in over 40% of various KS lesions and functions as a potent prolymphangiogenic factor by blocking the phosphorylation-dependent cytosolic translocation of HDAC5, which in turn modulates global gene expression in LECs. Consequently, vIRF3-HDAC5 interaction contributes to virus-induced lymphangiogenesis. The results of this study suggest that KSHV vIRF3 plays a crucial role in KSHV-induced malignancy

    Three-Dimensional Structure and Evolution of Extreme-Ultraviolet Bright Points Observed by STEREO/SECCHI/EUVI

    Get PDF
    We unveil the three-dimensional structure of quiet-Sun EUV bright points and their temporal evolution by applying a triangulation method to time series of images taken by SECCHI/EUVI on board the STEREO twin spacecraft. For this study we examine the heights and lengths as the components of the three-dimensional structure of EUV bright points and their temporal evolutions. Among them we present three bright points which show three distinct changes in the height and length: decreasing, increasing, and steady. We show that the three distinct changes are consistent with the motions (converging, diverging, and shearing, respectively) of their photospheric magnetic flux concentrations. Both growth and shrinkage of the magnetic fluxes occur during their lifetimes and they are dominant in the initial and later phases, respectively. They are all multi-temperature loop systems which have hot loops (approx. 10(exp 6.2) K) overlying cooler ones (approx 10(exp 6.0) K) with cool legs (approx 10(exp 4.9) K) during their whole evolutionary histories. Our results imply that the multi-thermal loop system is a general character of EUV bright points. We conclude that EUV bright points are flaring loops formed by magnetic reconnection and their geometry may represent the reconnected magnetic field lines rather than the separator field lines

    Validation of Global EUV Wave MHD Simulations and Observational Techniques

    Get PDF
    Global EUV waves remain a controversial phenomenon more than 20 yr after their discovery by SOHO/EIT. Although consensus is growing in the community that they are most likely large-amplitude waves or shocks, the wide variety of observations and techniques used to identify and analyze them have led to disagreements regarding their physical properties and interpretation. Here, we use a 3D magnetohydrodynamic (MHD) model of the solar corona to simulate an EUV wave event on 2009 February 13 to enable a detailed validation of the various commonly used detection and analysis techniques of global EUV waves. The simulated event exhibits comparable behavior to that of a real EUV wave event, with similar kinematic behavior and plasma parameter evolution. The kinematics of the wave are estimated via visual identification and profile analysis, with both approaches providing comparable results. We find that projection effects can affect the derived kinematics of the wave, due to the variation in fast-mode wave speed with height in the corona. Coronal seismology techniques typically used for estimates of the coronal magnetic field are also tested and found to estimate fast-mode speeds comparable to those of the model. Plasma density and temperature variations of the wave front are also derived using a regularized inversion approach and found to be consistent with observed wave events. These results indicate that global waves are best interpreted as large-amplitude waves and that they can be used to probe the coronal medium using well-defined analysis techniques

    Comparison of postnatal catch-up growth according to definitions of small for gestational age infants

    Get PDF
    PurposeSmall for gestational age (SGA) is confusingly defined as birth weight (BW) either below 3rd percentile or 10th percentile for infants. This study aimed to compare postnatal catch-up growth between SGA groups according to different definitions.MethodsData of 129 infants born with BW below the 10th percentile and admitted to Korea University Anam Hospital and Ansan Hospital were retrospectively reviewed. Height and weight were measured at 6, 12, and 24 months. Results were compared between group A (BW: <3rd percentile) and group B (BW: 3rd–10th percentile).ResultsGroup A included 66 infants and group B included 63. At age 6 months (n=122), 62.9% of group A and 71.7% (P=0.303) of group B showed catch-up growth in weight. At 6 months (n=69), 55.9% of group A and 80.0% of group B (P<0.05) showed catch-up growth in height. At 12 months (n=106), 58.5% of group A, and 75.5% (P=0.062) of group B showed catch-up growth in weight. At 12 months (n=75), 52.8% of group A and 64.1% of group B (P=0.320) showed catch-up growth in height. Up to age 24 months, 66.7%/80.0% in group A and 63.6%/80.0% in group B showed catch-up growth in weight/height.ConclusionDespite different definitions, there were no significant differences between the two SGA groups in postnatal catch-up growth up to age 24 months, except for height at 6 months. Compared to infants with appropriate catch-up growth, low gestational age and BW were risk factors for failed catch-up growth at 6 months
    • …
    corecore