15 research outputs found

    ZnO Low-Dimensional Thin Films Used as a Potential Material for Water Treatment

    Get PDF
    In this paper the properties of zinc oxide (ZnO) low-dimensional conductive oxide nanostructures in the aspect of their potential applications in microelectronics, in toxic gas sensors as well as checking whether they can be also used in water treatment has been determined. ZnO nanostructured porous thin films deposited by DC reactive sputtering (RS) have been deposited on Si substrates at different temperature conditions. For the surface properties and chemical morphology analysis the X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) have been used. Thanks to those methods, it is possible to obtain information on changes in the structure caused by the adsorption of various gases from the atmosphere, mainly C pollution from air, but also from the water. Investigated ZnO thin films were also tested for their photocatalytic properties performed in UV light. For this purpose the methylene blue as a dye pollutant to evaluate the activity of the nanostructures has been used. Within this work it has been observed that the ZnO thin films, which were used, react in the selected environment and their presence reduces the amount of dye. This shows that in addition to sensor properties, properly selected zinc oxide nanostructures, used so far in toxic gas sensors, can also be used in the process of water purification and treatment, which is crucial in protecting the natural environment primarily from various types of dyes or also medicines

    Novel insight on the local surface properties of ZnO nanowires.

    Get PDF
    Abstract Novel insight on the local surface properties of ZnO nanowires (NW) deposited by the evaporation-condensation method on Ag-covered Si substrates is proposed, based on the results of comparative studies by using the scanning electron microscopy (SEM), x-ray photoemission spectroscopy (XPS) and thermal desorption spectroscopy (TDS) methods, respectively. SEM studies showed that ZnO nanowires (nanoribbons) are mostly isolated and irregular, having the average length ÎŒm and the average at the level of tens nm, respectively. Our XPS studies confirmed their evident surface non-stoichiometry, combined with strong C surface contaminations, which was related to the existence of oxygen-deficient regions. Additionally, TDS studies showed that undesired surface contaminations (including C species and hydroxyl groups) on the surface of ZnO NWs can be removed almost completely, leading to an increase of the final non-stoichiometry. Both effects are of great importance when using ZnO NWs for the detection of oxidizing gases, because the undesired C contaminations (including C–OH species) play the role of undesired barriers for the gas adsorption, especially at the low working temperature, additionally affecting the uncontrolled sensor ageing effect

    A Novel Type Room Temperature Surface Photovoltage Gas Sensor Device

    No full text
    In this paper a novel type of a highly sensitive gas sensor device based on the surface photovoltage effect is described. It is based on the Kelvin probe approach. Porous ZnO nanostructured thin films deposited by the direct current (DC) reactive magnetron sputtering method are used as the active gas sensing electrode material. Crucially, the obtained gas sensing material exhibited a nanocoral surface morphology and surface Zn to O non-stoichiometry with respect to its bulk mass. Among other responses, the demonstrated SPV gas sensor device exhibits a high response to an NO2 concentration as low as 1 ppm, with a signal to noise ratio of about 50 and a fast response time of several seconds under room temperature conditions

    Impact of air exposure and annealing on the chemical and electronic properties of the surface of SnO2 nanolayers deposited by rheotaxial growth and vacuum oxidation

    No full text
    In this paper the SnO2 nanolayers were deposited by rheotaxial growth and vacuum oxidation (RGVO) and analyzed for the susceptibility to ambient-air exposure and the subsequent recovery under vacuum conditions. Particularly the surface chemistry of the layers, stoichiometry and level of carbon contamination, was scrutinized by X-ray photoelectron spectroscopy (XPS). The layers were tested i) pristine, ii) after air exposure and iii) after UHV annealing to validate perspective recovery procedures of the sensing layers. XPS results showed that the pristine RGVO SnO2 nanolayers are of high purity with a ratio [O]/[Sn] = 1.62 and almost no carbon contamination. After air exposure the relative [O]/[Sn] concentration increased to 1.80 while maintaining a relatively low level of carbon contaminants. Subsequent UHV annealing led to a relative [O]/[Sn] concentration comparable to the pristine samples. The oxidation resulted in a variation of the distance between the valence band edge and the Fermi level energy. This was attributed to oxygen diffusion through the porous SnO2 surface as measured by atomic force microscopy

    Flower-like ZnO Nanostructures Local Surface Morphology and Chemistry

    No full text
    This work presents the results of comparative studies using complementary methods, such as scanning electron microscopy (SEM), X-ray photoemission spectroscopy (XPS), and thermal desorption spectroscopy (TDS) to investigate the local surface morphology and chemistry of flower-like ZnO nanostructures synthesized by the thermal oxidation technique on native Si/SiO2 substrates. SEM studies showed that our flower-like ZnO nanostructures contained mostly isolated and irregular morphological low-dimensional forms, seen as rolled-up floss flowers, together with local, elongated, complex stalks similar to Liatris flowers, which contained joined short flosses in the form of nanodendrites. Beyond this, XPS studies showed that these nanostructures exhibited a slight surface nonstoichiometry, mostly related to the existence of oxygen-deficient regions, combined with strong undesired C surface contamination. In addition, the TDS studies showed that these undesired surface contaminations (including mainly C species and hydroxyl groups) are only slightly removed from the surface of our flower-like ZnO nanostructures, causing an expected modification of their nonstoichiometry. All of these effects are of great importance when using our flower-like ZnO nanostructures in gas sensor devices for detecting oxidizing gases because surface contamination leads to an undesired barrier for toxic gas adsorption, and it can additionally be responsible for the uncontrolled sensor aging effect

    Pure and highly Nb-doped titanium dioxide nanotubular arrays: Characterization of local surface properties

    No full text
    This paper presents the results of studies of the local surface properties of pure and highly Nb-doped (12 wt %) TiO2 nanotubes (TNT) using the X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) methods, respectively. XPS analysis showed that the pure TNT exhibit an evident over-stoichiometry combined with high level of undesired C contaminations, which was confirmed by the relative concentration of specific elements O, Ti and C (with respect to all the surface atoms) equal to 0.46, 018 and 0.36, respectively. In turn, for the highly Nb-doped (12 wt %) TNT, a slightly different surface chemistry was observed because the relative concentration of specific elements O and Ti and, with respect to all the surface atoms, is slightly lower, that is, 0.42 and 0.12, respectively; this is directly related to the fact that Nb atoms appeared having the relative concentration at the level of 0.09, whereas the undesired C contaminations reached the same level (0.36), as is the case of pure TNT. In addition, SEM analysis confirms that there are evident free spaces between the specific slops containing several TNT, what was additionally confirmed by the contribution of specific surface bonding coming from the SiO2/Si substrate. The obtained information allowed us a new insight on the potential origin of aging effect at the surface of TNT in atmosphere being the undesired limitation for their potential application as the chemical resistive type sensors or in any other fields of their application related to their surface activity

    Surface Properties of Nanostructured, Porous ZnO Thin Films Prepared by Direct Current Reactive Magnetron Sputtering

    No full text
    In this paper, the results of detailed X-ray photoelectron spectroscopy (XPS) studies combined with atomic force microscopy (AFM) investigation concerning the local surface chemistry and morphology of nanostructured ZnO thin films are presented. They have been deposited by direct current (DC) reactive magnetron sputtering under variable absolute Ar/O2 flows (in sccm): 3:0.3; 8:0.8; 10:1; 15:1.5; 20:2, and 30:3, respectively. The XPS studies allowed us to obtain the information on: (1) the relative concentrations of main elements related to their surface nonstoichiometry; (2) the existence of undesired C surface contaminations; and (3) the various forms of surface bondings. It was found that only for the nanostructured ZnO thin films, deposited under extremely different conditions, i.e., for Ar/O2 flow ratio equal to 3:0.3 and 30:3 (in sccm), respectively, an evident and the most pronounced difference had been observed. The same was for the case of AFM experiments. What is crucial, our experiments allowed us to find the correlation mainly between the lowest level of C contaminations and the local surface morphology of nanostructured ZnO thin films obtained at the highest Ar/O2 ratio (30:3), for which the densely packaged (agglomerated) nanograins were observed, yielding a smaller surface area for undesired C adsorption. The obtained information can help in understanding the reason of still rather poor gas sensor characteristics of ZnO based nanostructures including the undesired ageing effect, being of a serious barrier for their potential application in the development of novel gas sensor devices

    Oxide – organic heterostructures: a case study of charge displacement absence at a SnO2 – copper phthalocyanine buried interface

    No full text
    Reduced tin dioxide/copper phthalocyanine (SnOx/CuPc) heterojunctions recently gained much attention in hybrid electronics due to their defect structure, allowing tuning of the electronic properties at the interface towards particular needs. In this work, we focus on the creation and analysis of the interface between the oxide and organic layer. The inorganic/organic heterojunction was created by depositing CuPc on SnOx layers prepared with the rheotaxial growth and vacuum oxidation (RGVO) method. Exploiting surface sensitive photoelectron spectroscopy techniques, angle dependent X-ray and UV photoelectron spectroscopy (ADXPS and UPS, respectively), supported by semi-empirical simulations, the role of carbon from adventitious organic adsorbates directly at the SnOx/CuPc interface was investigated. The adventitious organic adsorbates were blocking electronic interactions between the environment and surface, hence pinning energy levels. A significant interface dipole of 0.4 eV was detected, compensating for the difference in work functions of the materials in contact, however, without full alignment of the energy levels. From the ADXPS and UPS results, a detailed diagram of the interfacial electronic structure was constructed, giving insight into how to tailor SnOx/CuPc heterojunctions towards specific applications. On the one hand, parasitic surface contamination could be utilized in technology for passivation-like processes. On the other hand, if one needs to keep the oxide's surficial interactions fully accessible, like in the case of stacked electronic systems or gas sensor applications, carbon contamination must be carefully avoided at each processing step
    corecore