6 research outputs found

    The Immune Landscape of Cancer

    Get PDF
    We performed an extensive immunogenomic anal-ysis of more than 10,000 tumors comprising 33diverse cancer types by utilizing data compiled byTCGA. Across cancer types, we identified six im-mune subtypes\u2014wound healing, IFN-gdominant,inflammatory, lymphocyte depleted, immunologi-cally quiet, and TGF-bdominant\u2014characterized bydifferences in macrophage or lymphocyte signa-tures, Th1:Th2 cell ratio, extent of intratumoral het-erogeneity, aneuploidy, extent of neoantigen load,overall cell proliferation, expression of immunomod-ulatory genes, and prognosis. Specific drivermutations correlated with lower (CTNNB1,NRAS,orIDH1) or higher (BRAF,TP53,orCASP8) leukocytelevels across all cancers. Multiple control modalitiesof the intracellular and extracellular networks (tran-scription, microRNAs, copy number, and epigeneticprocesses) were involved in tumor-immune cell inter-actions, both across and within immune subtypes.Our immunogenomics pipeline to characterize theseheterogeneous tumors and the resulting data areintended to serve as a resource for future targetedstudies to further advance the field

    SI files for "Regio- and stereoselective polymerization of diynes with inorganic comonomer: A facile strategy to conjugated poly(p-arylene dihalodiene)s with processability and postfunctionalizability"

    No full text
    These are the SI files for "Regio- and stereoselective polymerization of diynes with inorganic comonomer: A facile strategy to conjugated poly(p-arylene dihalodiene)s with processability and postfunctionalizability".Abstract for associated article:Development of new methodologies for synthesizing polymers with novel structures and unique properties is a fundamentally important area in polymer science. Herein, a novel synthetic strategy to conjugated poly(p-arylene dihalodiene)s (PADs) with high regio- and stereoselectivity was developed. In the presence of PdBr 2 and CuBr 2 , the polymerizations of terminal alkynes proceeded smoothly in air without heating to generate PADs in high yields (up to 95.3%) with high molecular weights (M w up to 915 900). Low-cost inorganic CuBr 2 played dual roles as cocatalyst and comonomer. The PADs possessed good solubility and film-formi ng ability. Their thin films exhibited high refractive indices (1.7149-1.7245) and would be fabricated into well-resolved fluorescent photopatterns by photolithography. Thanks to the vinyl bromine functionality, the PADs could undergo efficient postmodification to afford polymers with more sophisticated structures and applications.</div

    Clusterization-triggered emission: Uncommon luminescence from common materials

    Get PDF
    π-Conjugated chromophores have been investigated for many years and successful theoretical models have been developed to explain their photophysical properties. However, materials have appeared sporadically that do not fit within these existing models. Some of these materials possess entirely nonconjugated structures based on saturated C–C, C–O or C–N bonds, but their aggregates or solid-state forms show bright visible emission. This phenomenon is termed as clusterization-triggered emission (CTE) and the materials possessing the property are labeled clusteroluminogens. In this review, we provide a brief summary of the recent development of clusteroluminogens. The materials are classified into three categories: polymers (natural and synthetic polymers), small molecules (with and without aromatic rings) and metal clusters. Possible luminescence mechanisms underpinning the different categories of clusteroluminogens are analyzed individually. Finally, we put forward a comprehensive theory of the through-space conjugation (TSC) for these chromophores. Based on the CTE effect and TSC theory, various applications have been envisioned, for example in the areas of process monitoring, structural visualization, sensors, and probes. It is anticipated that this new research direction will bring many breakthroughs, not only in the theoretical areas, but also in these advanced applications of light-emitting materials
    corecore