3,264 research outputs found

    C5 Extract Induces Apoptosis in B16F10 Murine Melanoma Cells through Extrinsic and Intrinsic Apoptotic Pathways and Sub-G1 Phase Arrest

    Get PDF
    Purpose: To investigate the anti-cancer activities of C5 extract (C5E), a new herbal preparation from Korea, on B16F10 cells.Methods: The anti-proliferative effects of C5E were assessed by culturing B16F10 cells in the presence or absence of C5E. Cell cycle progression was analyzed by PI staining using flow cytometry. The quantities of apoptosis-inducing proteins were measured by Western blot.Results: C5E inhibited the proliferation of B16F10 cells but not human keratinocytes. C5E induced S phase arrest by interfering with cell regulatory factors such as cyclins B1, D1, D3, and E, and cyclindependent kinase 2, in B16F10 cells. Furthermore, immunoblot analysis confirmed that treatment with C5E induced apoptosis and cleaved caspase-3, poly (ADP-ribose) polymerase, via extrinsic pathway, whereas Bcl-2 expression was down-regulated. In addition, the suppression of cell proliferation by C5E is through down-regulation of p-Akt, up-regulation of phosphatase and tensin homolog protein expression via phosphoinositol 3 kinase survival signaling pathways in B16F10 cells. The combined cytotoxic effects of C5E and vinblastine generated 10 % increase in activity in contrast to the sum of the inhibitory effects of the individual agents.Conclusion: C5E shows promising anti-cancer activity and can be a useful adjuvant with vinblastine in combination therapeutic treatment of skin cancer.Keywords: Melanoma, Apoptosis, Anti-cancer, p53, Vinblastine, Cell cycle arrest, Caspas

    The C-Fern (Ceratopteris richardii) Genome: Insights Into Plant Genome Evolution With the First Partial Homosporous Fern Genome Assembly

    Get PDF
    Ferns are notorious for possessing large genomes and numerous chromosomes. Despite decades of speculation, the processes underlying the expansive genomes of ferns are unclear, largely due to the absence of a sequenced homosporous fern genome. The lack of this crucial resource has not only hindered investigations of evolutionary processes responsible for the unusual genome characteristics of homosporous ferns, but also impeded synthesis of genome evolution across land plants. Here, we used the model fern species Ceratopteris richardii to address the processes (e.g., polyploidy, spread of repeat elements) by which the large genomes and high chromosome numbers typical of homosporous ferns may have evolved and have been maintained. We directly compared repeat compositions in species spanning the green plant tree of life and a diversity of genome sizes, as well as both short- and long-read-based assemblies of Ceratopteris. We found evidence consistent with a single ancient polyploidy event in the evolutionary history of Ceratopteris based on both genomic and cytogenetic data, and on repeat proportions similar to those found in large flowering plant genomes. This study provides a major stepping-stone in the understanding of land plant evolutionary genomics by providing the first homosporous fern reference genome, as well as insights into the processes underlying the formation of these massive genomes

    On the equivalence of the Langevin and auxiliary field quantization methods for absorbing dielectrics

    Get PDF
    Recently two methods have been developed for the quantization of the electromagnetic field in general dispersing and absorbing linear dielectrics. The first is based upon the introduction of a quantum Langevin current in Maxwell's equations [T. Gruner and D.-G. Welsch, Phys. Rev. A 53, 1818 (1996); Ho Trung Dung, L. Kn\"{o}ll, and D.-G. Welsch, Phys. Rev. A 57, 3931 (1998); S. Scheel, L. Kn\"{o}ll, and D.-G. Welsch, Phys. Rev. A 58, 700 (1998)], whereas the second makes use of a set of auxiliary fields, followed by a canonical quantization procedure [A. Tip, Phys. Rev. A 57, 4818 (1998)]. We show that both approaches are equivalent.Comment: 7 pages, RevTeX, no figure

    The Role of Repeated Exposure to Multimodal Input in Incidental Acquisition of Foreign Language Vocabulary

    Get PDF
    Prior research has reported incidental vocabulary acquisition with complete beginners in a foreign language (FL), within 8 exposures to auditory and written FL word forms presented with a picture depicting their meaning. However, important questions remain about whether acquisition occurs with fewer exposures to FL words in a multimodal situation and whether there is a repeated exposure effect. Here we report a study where the number of exposures to FL words in an incidental learning phase varied between 2, 4, 6, and 8 exposures. Following the incidental learning phase, participants completed an explicit learning task where they learned to recognize written translation equivalents of auditory FL word forms, half of which had occurred in the incidental learning phase. The results showed that participants performed better on the words they had previously been exposed to, and that this incidental learning effect occurred from as little as 2 exposures to the multimodal stimuli. In addition, repeated exposure to the stimuli was found to have a larger impact on learning during the first few exposures and decrease thereafter, suggesting that the effects of repeated exposure on vocabulary acquisition are not necessarily constant

    Improving population-level refractive error monitoring via mixture distributions

    Full text link
    Introduction: Sampling and describing the distribution of refractive error in populations is critical to understanding eye care needs, refractive differences between groups and factors affecting refractive development. We investigated the ability of mixture models to describe refractive error distributions. Methods: We used key informants to identify raw refractive error datasets and a systematic search strategy to identify published binned datasets of community-representative refractive error. Mixture models combine various component distributions via weighting to describe an observed distribution. We modelled raw refractive error data with a single-Gaussian (normal) distribution, mixtures of two to six Gaussian distributions and an additive model of an exponential and Gaussian (ex-Gaussian) distribution. We tested the relative fitting accuracy of each method via Bayesian Information Criterion (BIC) and then compared the ability of selected models to predict the observed prevalence of refractive error across a range of cut-points for both the raw and binned refractive data. Results: We obtained large raw refractive error datasets from the United States and Korea. The ability of our models to fit the data improved significantly from a single-Gaussian to a two-Gaussian-component additive model and then remained stable with ≥3-Gaussian-component mixture models. Means and standard deviations for BIC relative to 1 for the single-Gaussian model, where lower is better, were 0.89 ± 0.05, 0.88 ± 0.06, 0.89 ± 0.06, 0.89 ± 0.06 and 0.90 ± 0.06 for two-, three-, four-, five- and six-Gaussian-component models, respectively, tested across US and Korean raw data grouped by age decade. Means and standard deviations for the difference between observed and model-based estimates of refractive error prevalence across a range of cut-points for the raw data were −3.0% ± 6.3, 0.5% ± 1.9, 0.6% ± 1.5 and −1.8% ± 4.0 for one-, two- and three-Gaussian-component and ex-Gaussian models, respectively. Conclusions: Mixture models appear able to describe the population distribution of refractive error accurately, offering significant advantages over commonly quoted simple summary statistics such as mean, standard deviation and prevalence

    Multipole interaction between atoms and their photonic environment

    Get PDF
    Macroscopic field quantization is presented for a nondispersive photonic dielectric environment, both in the absence and presence of guest atoms. Starting with a minimal-coupling Lagrangian, a careful look at functional derivatives shows how to obtain Maxwell's equations before and after choosing a suitable gauge. A Hamiltonian is derived with a multipolar interaction between the guest atoms and the electromagnetic field. Canonical variables and fields are determined and in particular the field canonically conjugate to the vector potential is identified by functional differentiation as minus the full displacement field. An important result is that inside the dielectric a dipole couples to a field that is neither the (transverse) electric nor the macroscopic displacement field. The dielectric function is different from the bulk dielectric function at the position of the dipole, so that local-field effects must be taken into account.Comment: 17 pages, to be published in Physical Review

    Resonant dipole-dipole interaction in the presence of dispersing and absorbing surroundings

    Full text link
    Within the framework of quantization of the macroscopic electromagnetic field, equations of motion and an effective Hamiltonian for treating both the resonant dipole-dipole interaction between two-level atoms and the resonant atom-field interaction are derived, which can suitably be used for studying the influence of arbitrary dispersing and absorbing material surroundings on these interactions. The theory is applied to the study of the transient behavior of two atoms that initially share a single excitation, with special emphasis on the role of the two competing processes of virtual and real photon exchange in the energy transfer between the atoms. In particular, it is shown that for weak atom-field interaction there is a time window, where the energy transfer follows a rate regime of the type obtained by ordinary second-order perturbation theory. Finally, the resonant dipole-dipole interaction is shown to give rise to a doublet spectrum of the emitted light for weak atom-field interaction and a triplet spectrum for strong atom-field interaction.Comment: 15 pages, 1 figure, RevTE

    Charge disproportionation and the pressure-induced insulator?metal transition in cubic perovskite PbCrO3

    Get PDF
    The perovskite PbCrO3 is an antiferromagnetic insulator. However, the fundamental interactions leading to the insulating state in this single-valent perovskite are unclear. Moreover, the origin of the unprecedented volume drop observed at a modest pressure of P = 1.6 GPa remains an outstanding problem. We report a variety of in situ pressure measurements including electron transport properties, X-ray absorption spectrum, and crystal structure study by X-ray and neutron diffraction. These studies reveal key information leading to the elucidation of the physics behind the insulating state and the pressure-induced transition. We argue that a charge disproportionation 3Cr4+ → 2Cr3+ + Cr6+ in association with the 6s-p hybridization on the Pb2+ is responsible for the insulating ground state of PbCrO3 at ambient pressure and the charge disproportionation phase is suppressed under pressure to give rise to a metallic phase at high pressure. The model is well supported by density function theory plus the correlation energy U (DFT+U) calculations.Fil: Cheng, Jinguang. University Of Texas At Austin; Estados Unidos. Chinese Academy Of Sciences; República de China. University of Tokyo. Institute for Solid State Physics; JapónFil: Kweon, K. E.. University Of Texas At Austin; Estados UnidosFil: Larregola, Sebastian Alberto. University Of Texas At Austin; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis. Instituto de Investigaciones en Tecnología Química; ArgentinaFil: Ding, Yang. Argonne National Laboratory; Estados UnidosFil: Shirako, Y.. University Of Texas At Austin; Estados UnidosFil: Marshall, L. G.. University Of Texas At Austin; Estados Unidos. Northeastern University; Estados UnidosFil: Li, Z. Y.. University Of Texas At Austin; Estados UnidosFil: Li, X.. University Of Texas At Austin; Estados UnidosFil: Dos Santos, António M.. Oak Ridge National Laboratory. Quantum Condensed Matter Division; Estados UnidosFil: Suchomel, M. R.. Argonne National Laboratory; Estados UnidosFil: Matsubayashi, K.. University of Tokyo. Institute for Solid State Physics; JapónFil: Uwatoko, Y.. University of Tokyo. Institute for Solid State Physics; JapónFil: Hwang, G. S.. University Of Texas At Austin; Estados UnidosFil: Goodenough, John B.. University Of Texas At Austin; Estados UnidosFil: Zhou, J. S.. University Of Texas At Austin; Estados Unido
    corecore