31 research outputs found

    Hepatitis B Viral Surface Mutations in Patients with Adefovir Resistant Chronic Hepatitis B with A181T/V Polymerase Mutations

    Get PDF
    The hepatitis B virus (HBV) polymerase gene has overlapping reading frames with surface genes, which allows to alter the amino acid codon of the surface genes. In adefovir (ADV) treated chronic hepatitis B patients carrying rtA181T/rtA181V mutations, overlap with surface gene mutations such as sW172stop/sL173F has been reported. However, the clinical consequences of such surface mutations have not been determined. The aim of this study was to determine the surface gene sequence in ADV-resistant patients carrying the A181T/V mutation and to describe the clinical significance. Of the 22 patients included in this study, 13 were ADV-resistant with rtA181T/V mutations (polymerase mutation group, Group P) and nine were antiviral treatment-naïve (control group, Group C). The Pre-S1 gene mutation, V60A, was detected in 11 patients (Group P=8, Group C=3). A start codon mutation in the Pre-S2 gene was found in five patients (Group P=3, Group C=2). An S gene mutation, sA184V, was found in nine patients, all of whom were in group P. Although sW172stop and sL173F mutations were detected, reduced HBsAg titer was not observed. Further study of these mutations and their clinical implications are needed

    Sporadic ALS has compartment-specific aberrant exon splicing and altered cell–matrix adhesion biology

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive weakness from loss of motor neurons. The fundamental pathogenic mechanisms are unknown and recent evidence is implicating a significant role for abnormal exon splicing and RNA processing. Using new comprehensive genomic technologies, we studied exon splicing directly in 12 sporadic ALS and 10 control lumbar spinal cords acquired by a rapid autopsy system that processed nervous systems specifically for genomic studies. ALS patients had rostral onset and caudally advancing disease and abundant residual motor neurons in this region. We created two RNA pools, one from motor neurons collected by laser capture microdissection and one from the surrounding anterior horns. From each, we isolated RNA, amplified mRNA, profiled whole-genome exon splicing, and applied advanced bioinformatics. We employed rigorous quality control measures at all steps and validated findings by qPCR. In the motor neuron enriched mRNA pool, we found two distinct cohorts of mRNA signals, most of which were up-regulated: 148 differentially expressed genes (P ≤ 10−3) and 411 aberrantly spliced genes (P ≤ 10−5). The aberrantly spliced genes were highly enriched in cell adhesion (P ≤ 10−57), especially cell–matrix as opposed to cell–cell adhesion. Most of the enriching genes encode transmembrane or secreted as opposed to nuclear or cytoplasmic proteins. The differentially expressed genes were not biologically enriched. In the anterior horn enriched mRNA pool, we could not clearly identify mRNA signals or biological enrichment. These findings, perturbed and up-regulated cell–matrix adhesion, suggest possible mechanisms for the contiguously progressive nature of motor neuron degeneration. Data deposition: GeneChip raw data (CEL-files) have been deposited for public access in the Gene Expression Omnibus (GEO), www.ncbi.nlm.nih.gov/geo, accession number GSE18920

    Dancing in time: feasibility and acceptability of a contemporary dance programme to modify risk factors for falling in community dwelling older adults

    Get PDF
    Background: Falls are a common cause of injury in older adults, with the prevention of falls being a priority for public health departments around the world. This study investigated the feasibility, and impact of an 8 week contemporary dance programme on modifiable physical (physical activity status, mobility, sedentary behaviour patterns) and psychosocial (depressive state, fear of falling) risk factors for falls. Methods: An uncontrolled ‘pre-post’ intervention design was used. Three groups of older (60 yrs.+) adults were recruited from local community groups to participate in a 3 separate, 8 week dance programmes. Each programme comprised two, 90 min dance classes per week. Quantitative measures of physical activity, sedentary behaviour, depression, mobility and fear of falling were measured at baseline (T1) and after 8 weeks of dance (T2). Weekly attendance was noted, and post-study qualitative work was conducted with participants in 3 separate focus groups. A combined thematic analysis of these data was conducted. Results: Of the 38 (Mean Age = 77.3 ± 8.4 yrs., 37 females) who attended the dance sessions, 22 (21 females; 1 male; mean age = 74.8, ±8.44) consented to be part of the study. Mean attendance was 14.6 (±2.6) sessions, and mean adherence was 84.3% (±17). Significant increases in moderate and vigorous physical activity were noted, with a significant decrease in sitting time over the weekdays (p < 0.05). Statistically significant decreases in the mean Geriatric Depression Scale (p < 0.05) and fear of falling (p < 0.005) score were noted, and the time taken to complete the TUG test decreased significantly from 10.1 s to 7.7 s over the 8 weeks (p < 0.005). Themes from the focus groups included the dance programme as a means of being active, health Benefits, and dance-related barriers and facilitators. Conclusions: The recruitment of older adults, good adherence and favourability across all three sites indicate that a dance programme is feasible as an intervention, but this may be limited to females only. Contemporary dance has the potential to positively affect the physical activity, sitting behaviour, falls related efficacy, mobility and incidence of depression in older females which could reduce their incidence of falls. An adequately powered study with control groups are required to test this intervention further

    Evaluation of metabolomic changes as a biomarker of chondrogenic differentiation in 3D-cultured human mesenchymal stem cells using proton (1H) nuclear magnetic resonance spectroscopy.

    Get PDF
    PURPOSE:The purpose of this study was to evaluate the metabolomic changes in 3D-cultured human mesenchymal stem cells (hMSCs) in alginate beads, so as to identify biomarkers during chondrogenesis using (1)H nuclear magnetic resonance (NMR) spectroscopy. MATERIALS AND METHODS:hMSCs (2×10(6) cells/mL) were seeded into alginate beads, and chondrogenesis was allowed to progress for 15 days. NMR spectra of the chondrogenic hMSCs were obtained at 4, 7, 11, and 15 days using a 14.1-T (600-MHz) NMR with the water suppression sequence, zgpr. Real-Time polymerase chain reaction (PCR) was performed to confirm that that the hMSCs differentiated into chondrocytes and to analyze the metabolomic changes indicated by the NMR spectra. RESULTS:During chondrogenesis, changes were detected in several metabolomes as hMSC chondrogenesis biomarkers, e.g., fatty acids, alanine, glutamate, and phosphocholine. The metabolomic changes were compared with the Real-Time PCR results, and significant differences were determined using statistical analysis. We found that changes in metabolomes were closely related to biological reactions that occurred during the chondrogenesis of hMSCs. CONCLUSIONS:In this study, we confirm that metabolomic changes detected by (1)H-NMR spectroscopy during chondrogenic differentiation of 3D-cultured hMSCs in alginate beads can be considered as biomarkers of stem cell differentiation

    Structural, Optical and Electrical Properties of HfO2 Thin Films Deposited at Low-Temperature Using Plasma-Enhanced Atomic Layer Deposition

    No full text
    HfO2 was deposited at 80&ndash;250 &deg;C by plasma-enhanced atomic layer deposition (PEALD), and properties were compared with those obtained by using thermal atomic layer deposition (thermal ALD). The ALD window, i.e., the region where the growth per cycle (GPC) is constant, shifted from high temperatures (150&ndash;200 &deg;C) to lower temperatures (80&ndash;150 &deg;C) in PEALD. HfO2 deposited at 80 &deg;C by PEALD showed higher density (8.1 g/cm3) than those deposited by thermal ALD (5.3 g/cm3) and a smooth surface (RMS Roughness: 0.2 nm). HfO2 deposited at a low temperature by PEALD showed decreased contaminants compared to thermal ALD deposited HfO2. Values of refractive indices and optical band gap of HfO2 deposited at 80 &deg;C by PEALD (1.9, 5.6 eV) were higher than those obtained by using thermal ALD (1.7, 5.1 eV). Transparency of HfO2 deposited at 80 &deg;C by PEALD on polyethylene terephthalate (PET) was high (&gt; 84%). PET deposited above 80 &deg;C was unable to withstand heat and showed deformation. HfO2 deposited at 80 &deg;C by PEALD showed decreased leakage current from 1.4 &times; 10&minus;2 to 2.5 &times; 10&minus;5 A/cm2 and increased capacitance of approximately 21% compared to HfO2 using thermal ALD. Consequently, HfO2 deposited at a low temperature by PEALD showed improved properties compared to HfO2 deposited by thermal ALD

    Changes in levels of non-fatty acid metabolites during chondrogenesis.

    No full text
    <p>Changes in levels of non-fatty acid metabolites during chondrogenesis.</p

    One-way ANOVA of cell metabolites according to duration of chondrogenic differentiation.

    No full text
    <p>(a) Fatty acid 1, Tukey’s <i>posteriori</i> test; fatty acid 2, Dunnett’s T3 <i>posteriori</i> test. Statistical tests were performed for both the first and second hMSC chondrogenic differentiation experiments. (b) Alanine, GABA and glutamate. Tukey’s <i>posteriori</i> tests; *<i>p</i> < 0.05.</p
    corecore