384 research outputs found
Study of permeability characteristics of membranes Quarterly progress report, 9 Apr. - 9 Aug. 1968
Electrochemical cell constructed to measure membrane transport propertie
Study of permeability characteristics of membranes Quarterly reports, 9 Nov. 1967 - 9 Apr. 1968
Permeability characteristics and transport properties of membranes for salt water conversion, and experiment design
Breathing silicon anodes for durable high-power operations
Silicon anode materials have been developed to achieve high capacity lithium ion batteries for operating smart phones and driving electric vehicles for longer time. Serious volume expansion induced by lithiation, which is the main drawback of silicon, has been challenged by multi-faceted approaches. Mechanically rigid and stiff polymers (e.g. alginate and carboxymethyl cellulose) were considered as the good choices of binders for silicon because they grab silicon particles in a tight and rigid way so that pulverization and then break-away of the active mass from electric pathways are suppressed. Contrary to the public wisdom, in this work, we demonstrate that electrochemical performances are secured better by letting silicon electrodes breathe in and out lithium ions with volume change rather than by fixing their dimensions. The breathing electrodes were achieved by using a polysaccharide (pullulan), the conformation of which is modulated from chair to boat during elongation. The conformational transition of pullulan was originated from its a glycosidic linkages while the conventional rigid polysaccharide binders have beta linkages.119201sciescopu
Observation of impurity accumulation and its compatibility with high plasma performance in W7-X
At the W7-X stellarator, the bolometer system has measured an intensive radiation zone in the inner plasma region (at a normalized radius ρ ∼ 0.3–0.4) in the hydrogen plasma generated by electron cyclotron resonance heating; it differs from the normal plasma radiation distribution with an edge-localized emission zone. Spectroscopic diagnostics have recorded high-Z elements such as iron. This phenomenon happens in the plasma phases after gas supply turn-off, which results in all impurity relevant diagnostic signals increasing for several seconds. Despite the enhancement of the core radiation, the plasma energy confinement is improved. A transport analysis shows that this impurity radiation behavior is associated with a low diffusion coefficient (D∼ 0.02 m2 s−1) and a reversal of the convection around the radial position of the emission peak, which, under normal conditions, separates the zones of outward convection in the central (|V| ∼ 0.1 m s−1) and inward convection in the outer region (|V| ∼ 0.3 m s−1). An impurity accumulation around this radial position has been identified. The transport coefficients obtained are comparable with the theoretical predictions of collisional impurity transport. In the plasma phases studied, both impurity and energy confinement are enhanced. The mechanism responsible for the improvement is believed to be a reduction of micro-instabilities associated with the observed steepening of the density profile, initiated by a low edge plasma density (<1.0 × 1019 m−3) after switching off the gas fueling. The normalized temperature and density gradients fulfil the condition for the suppression of ITG turbulence
How a Diverse Research Ecosystem Has Generated New Rehabilitation Technologies: Review of NIDILRR’s Rehabilitation Engineering Research Centers
Over 50 million United States citizens (1 in 6 people in the US) have a developmental, acquired, or degenerative disability. The average US citizen can expect to live 20% of his or her life with a disability. Rehabilitation technologies play a major role in improving the quality of life for people with a disability, yet widespread and highly challenging needs remain. Within the US, a major effort aimed at the creation and evaluation of rehabilitation technology has been the Rehabilitation Engineering Research Centers (RERCs) sponsored by the National Institute on Disability, Independent Living, and Rehabilitation Research. As envisioned at their conception by a panel of the National Academy of Science in 1970, these centers were intended to take a “total approach to rehabilitation”, combining medicine, engineering, and related science, to improve the quality of life of individuals with a disability. Here, we review the scope, achievements, and ongoing projects of an unbiased sample of 19 currently active or recently terminated RERCs. Specifically, for each center, we briefly explain the needs it targets, summarize key historical advances, identify emerging innovations, and consider future directions. Our assessment from this review is that the RERC program indeed involves a multidisciplinary approach, with 36 professional fields involved, although 70% of research and development staff are in engineering fields, 23% in clinical fields, and only 7% in basic science fields; significantly, 11% of the professional staff have a disability related to their research. We observe that the RERC program has substantially diversified the scope of its work since the 1970’s, addressing more types of disabilities using more technologies, and, in particular, often now focusing on information technologies. RERC work also now often views users as integrated into an interdependent society through technologies that both people with and without disabilities co-use (such as the internet, wireless communication, and architecture). In addition, RERC research has evolved to view users as able at improving outcomes through learning, exercise, and plasticity (rather than being static), which can be optimally timed. We provide examples of rehabilitation technology innovation produced by the RERCs that illustrate this increasingly diversifying scope and evolving perspective. We conclude by discussing growth opportunities and possible future directions of the RERC program
The Arabidopsis ABA-Activated Kinase OST1 Phosphorylates the bZIP Transcription Factor ABF3 and Creates a 14-3-3 Binding Site Involved in Its Turnover
indicates that members of the Snf1-Related Kinases 2 family (SnRK2) are essential in mediating various stress-adaptive responses. Recent reports have indeed shown that one particular member, OPEN STOMATA (OST)1, whose kinase activity is stimulated by the stress hormone abscisic acid (ABA), is a direct target of negative regulation by the core ABA co-receptor complex composed of PYR/PYL/RCAR and clade A Protein Phosphatase 2C (PP2C) proteins. and that phospho-T451 is important for stabilization of ABF3. on T451 to create a 14-3-3 binding motif. In a wider physiological context, we propose that the long term responses to ABA that require sustained gene expression is, in part, mediated by the stabilization of ABFs driven by ABA-activated SnRK2s
Quantum-Dot Light-Emitting Diodes with Nitrogen-Doped Carbon Nanodot Hole Transport and Electronic Energy Transfer Layer
Electroluminescence efficiency is crucial for the application of quantum-dot light-emitting diodes (QD-LEDs) in practical devices. We demonstrate that nitrogen-doped carbon nanodot (N-CD) interlayer improves electrical and luminescent properties of QD-LEDs. The N-CDs were prepared by solution-based bottom up synthesis and were inserted as a hole transport layer (HTL) between other multilayer HTL heterojunction and the red-QD layer. The QD-LEDs with N-CD interlayer represented superior electrical rectification and electroluminescent efficiency than those without the N-CD interlayer. The insertion of N-CD layer was found to provoke the Forster resonance energy transfer (FRET) from N-CD to QD layer, as confirmed by time-integrated and - resolved photoluminescence spectroscopy. Moreover, hole-only devices (HODs) with N-CD interlayer presented high hole transport capability, and ultraviolet photoelectron spectroscopy also revealed that the N-CD interlayer reduced the highest hole barrier height. Thus, more balanced carrier injection with sufficient hole carrier transport feasibly lead to the superior electrical and electroluminescent properties of the QD-LEDs with N-CD interlayer. We further studied effect of N-CD interlayer thickness on electrical and luminescent performances for high-brightness QD-LEDs. The ability of the N-CD interlayer to improve both the electrical and luminescent characteristics of the QD-LEDs would be readily exploited as an emerging photoactive material for high-efficiency optoelectronic devices.ope
Identification of drought-responsive microRNAs in Medicago truncatula by genome-wide high-throughput sequencing
<p>Abstract</p> <p>Background</p> <p>MicroRNAs (miRNAs) are small, endogenous RNAs that play important regulatory roles in development and stress response in plants by negatively affecting gene expression post-transcriptionally. Identification of miRNAs at the global genome-level by high-throughout sequencing is essential to functionally characterize miRNAs in plants. Drought is one of the common environmental stresses limiting plant growth and development. To understand the role of miRNAs in response of plants to drought stress, drought-responsive miRNAs were identified by high-throughput sequencing in a legume model plant, <it>Medicago truncatula</it>.</p> <p>Results</p> <p>Two hundreds eighty three and 293 known miRNAs were identified from the control and drought stress libraries, respectively. In addition, 238 potential candidate miRNAs were identified, and among them 14 new miRNAs and 15 new members of known miRNA families whose complementary miRNA*s were also detected. Both high-throughput sequencing and RT-qPCR confirmed that 22 members of 4 miRNA families were up-regulated and 10 members of 6 miRNA families were down-regulated in response to drought stress. Among the 29 new miRNAs/new members of known miRNA families, 8 miRNAs were responsive to drought stress with both 4 miRNAs being up- and down-regulated, respectively. The known and predicted targets of the drought-responsive miRNAs were found to be involved in diverse cellular processes in plants, including development, transcription, protein degradation, detoxification, nutrient status and cross adaptation.</p> <p>Conclusions</p> <p>We identified 32 known members of 10 miRNA families and 8 new miRNAs/new members of known miRNA families that were responsive to drought stress by high-throughput sequencing of small RNAs from <it>M. truncatula</it>. These findings are of importance for our understanding of the roles played by miRNAs in response of plants to abiotic stress in general and drought stress in particular.</p
Unsteady numerical simulation of double diffusive convection heat transfer in a pulsating horizontal heating annulus
A numerical study is conducted on time-dependent double-diffusive natural convection heat transfer in a horizontal annulus. The inner cylinder is heated with sinusoidally-varying temperature while the outer cylinder is maintained at a cold constant temperature. The numerical procedure used in the present work is based on the Galerkin weighted residual method of finite-element formulation by incorporating a non-uniform mesh size. Comparisons with previous studies are performed and the results show excellent agreement. In addition, the effects of pertinent dimensionless parameters such as the thermal Rayleigh number, Buoyancy ratio, Lewis number, and the amplitude of the thermal forcing on the flow and heat transfer characteristics are considered in the present study. Furthermore, the amplitude and frequency of the heated inner cylinder is found to cause significant augmentation in heat transfer rate. The predictions of the temporal variation of Nusselt and Sherwood numbers are obtained and discussed.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45860/1/231_2005_Article_64.pd
- …