33 research outputs found

    Current status and future development of solvent-based carbon capture

    Get PDF
    Solvent-based carbon capture is the most commercially-ready technology for economically and sustainably reaching carbon emission reduction targets in the power sector. Globally, the technology has been deployed to deal with flue gases from large scale power plants and different carbon-intensive industries. The success of the technology is due to significant R&D activities on the process development and decades of industrial experience on acid gas removal processes from gaseous mixtures. In this paper, current status of PCC based on chemical absorption—commercial deployment and demonstration projects, analysis of different solvents and process configurations—is reviewed. Although some successes have been recorded in developing this technology, its commercialization has been generally slow as evidenced in the cancellation of high profile projects across the world. This is partly due to the huge cost burden of the technology and unpredictable government policies. Different research directions, namely new process development involving process intensification, new solvent development and a combination of both, are discussed in this paper as possible pathways for reducing the huge cost of the technology

    Forage fish interactions: A symposium on creating the tools for ecosystem-based management of marine resources

    Get PDF
    Forage fish (FF) have a unique position within marine foodwebs and the development of sustainable harvest strategies for FF will be a critical step in advancing and implementing the broader, ecosystem-based management of marine systems. In all, 70 scientists from 16 nations gathered for a symposium on 12–14 November 2012 that was designed to address three key questions regarding the effective management of FF and their ecosystems: (i) how do environmental factors and predator–prey interactions drive the productivity and distribution of FF stocks across ecosystems worldwide, (ii) what are the economic and ecological costs and benefits of different FF management strategies, and (iii) do commonalities exist across ecosystems in terms of the effective management of FF exploitation

    Operational flexibility options in power plants with integrated post-combustion capture

    Get PDF
    Flexibility in power plants with amine based carbon dioxide (CO2) capture is widely recognised as a way of improving power plant revenues. Despite the prior art, its value as a way to improve power plant revenues is still unclear. Most studies are based on simplifying assumptions about the capabilities of power plants to operate at part load and to regenerate additional solvent after interim storage of solvent. This work addresses this gap by examining the operational flexibility of supercritical coal power plants with amine based CO2 capture, using a rigorous fully integrated model. The part-load performance with capture and with additional solvent regeneration, of two coal-fired supercritical power plant configurations designed for base load operation with capture, and with the ability to fully bypass capture, is reported. With advanced integration options configuration, including boiler sliding pressure control, uncontrolled steam extraction with a floating crossover pressure, constant stripper pressure operation and compressor inlet guide vanes, a significant reduction of the electricity output penalty at part load is observed. For instance at 50% fuel input and 90% capture, the electricity output penalty reduces from 458 kWh/tCO2 (with conventional integration options) to 345 kWh/tCO2 (with advanced integration options), compared to a reduction from 361 kWh/tCO2 to 342 kWh/tCO2 at 100% fuel input and 90% capture. However, advanced integration options allow for additional solvent regeneration to a lower magnitude than conventional integration options. The latter can maintain CO2 flow export within 10% of maximum flow across 30–78% of MCR (maximum continuous rating). For this configuration, one hour of interim solvent storage at 100% MCR is evaluated to be optimally regenerated in 4 h at 55% MCR, and 3 h at 30% MCR, providing rigorously validated useful guidelines for the increasing number of techno-economic studies on power plant flexibility, and CO2 flow profiles for further studies on integrated CO2 networks

    Carbon vacancy control in p+-n silicon carbide diodes for high voltage bipolar applications

    No full text
    Publisher Copyright: © 2021 IOP Publishing Ltd.Controlling the carbon vacancy (V-C) in silicon carbide (SiC) is one of the major remaining bottleneck in manufacturing of high voltage SiC bipolar devices, because V-C provokes recombination levels in the bandgap, offensively reducing the charge carrier lifetime. In literature, prominent V-C evolutions have been measured by capacitance spectroscopy employing Schottky diodes, however the trade-offs occurring in the p(+)-n diodes received much less attention. In the present work, applying similar methodology, we showed that V-C is re-generated to its unacceptably high equilibrium level at similar to 2 x10(13) V-C cm(-3) by 1800 degrees C anneals required for the implanted acceptor activation in the p(+)-n components. Nevertheless, we have also demonstrated that the V-C eliminating by thermodynamic equilibrium anneals at 1500 degrees C employing carbon-cap can be readily integrated into the p(+)-n components fabrication resulting inPeer reviewe
    corecore