39 research outputs found

    Fluctuating optimum and temporally variable selection on breeding date in birds and mammals

    Get PDF
    International audienceTemporal variation in natural selection is predicted to strongly impact the evolution and demography of natural populations, with consequences for the rate of adaptation, evolution of plasticity, and extinction risk. Most of the theory underlying these predictions assumes a moving optimum phenotype, with predictions expressed in terms of the temporal variance and autocorrelation of this optimum. However, empirical studies seldom estimate patterns of fluctuations of an optimum phenotype, precluding further progress in connecting theory with observations. To bridge this gap, we assess the evidence for temporal variation in selection on breeding date by modeling a fitness function with a fluctuating optimum, across 39 populations of 21 wild animals, one of the largest compilations of long-term datasets with individual measurements of trait and fitness components. We find compelling evidence for fluctuations in the fitness function, causing temporal variation in the magnitude, but not the direction of selection. However, fluctuations of the optimum phenotype need not directly translate into variation in selection gradients, because their impact can be buffered by partial tracking of the optimum by the mean phenotype. Analyzing individuals that reproduce in consecutive years, we find that plastic changes track movements of the optimum phenotype across years, especially in bird species, reducing temporal variation in directional selection. This suggests that phenological plasticity has evolved to cope with fluctuations in the optimum, despite their currently modest contribution to variation in selection

    The interrelationship of governance, trust and ethics in temporary organisations

    No full text
    This study investigates the variety of ethical decisions of project managers and their impact from corporate governance and project governance structures. The roles of personal trust and system trust as a mechanism to steer ethical decision making in different governance settings is explored. Nine qualitative case studies in Europe, Asia, and Australia show that ethical decision making is contingent on trust, which in turn is contingent on the fulfillment of personal expectations within a given governance structure. The findings show the prerequisites for ethical decision making and the consequences of lack of trust. Further managerial and theoretical implications are discussed

    Resistance to gapeworm parasite has both additive and dominant genetic components in house sparrows, with evolutionary consequences for ability to respond to parasite challenge

    No full text
    Abstract Host–parasite relationships are likely to change over the coming decades in response to climate change and increased anthropogenic stressors. Understanding the genetic architecture of parasite resistance will aid prediction of species’ responses to intensified parasite challenge. The gapeworm “Syngamus trachea” is prevalent in natural bird populations and causes symptomatic infections ranging from mild to severe. The parasite may affect ecological processes by curtailing bird populations and is important due to its propensity to spread to commercially farmed birds. Our large‐scale data set on an insular house sparrow metapopulation in northern Norway includes information on gapeworm prevalence and infection intensity, allowing assessment of the genetics of parasite resistance in a natural system. To determine whether parasite resistance has a heritable genetic component, we performed variance component analyses using animal models. Resistance to gapeworm had substantial additive genetic and dominance variance, and genome‐wide association studies to identify single nucleotide polymorphisms associated with gapeworm resistance yielded multiple loci linked to immune function. Together with genome partitioning results, this indicates that resistance to gapeworm is under polygenic control in the house sparrow, and probably in other bird species. Hence, our results provide the foundation needed to study any eco‐evolutionary processes related to gapeworm infection, and show that it is necessary to use methods suitable for polygenic and nonadditive genetic effects on the phenotype

    Inbreeding is associated with shorter early-life telomere length in a wild passerine

    No full text
    Abstract Inbreeding can have negative effects on survival and reproduction, which may be of conservation concern in small and isolated populations. However, the physiological mechanisms underlying inbreeding depression are not well-known. The length of telomeres, the DNA sequences protecting chromosome ends, has been associated with health or fitness in several species. We investigated effects of inbreeding on early-life telomere length in two small island populations of wild house sparrows (Passer domesticus) known to be affected by inbreeding depression. Using genomic measures of inbreeding we found that inbred nestling house sparrows (n = 371) have significantly shorter telomeres. Using pedigree-based estimates of inbreeding we found a tendency for inbred nestling house sparrows to have shorter telomeres (n = 1195). This negative effect of inbreeding on telomere length may have been complemented by a heterosis effect resulting in longer telomeres in individuals that were less inbred than the population average. Furthermore, we found some evidence of stronger effects of inbreeding on telomere length in males than females. Thus, telomere length may reveal subtle costs of inbreeding in the wild and demonstrate a route by which inbreeding negatively impacts the physiological state of an organism already at early life-history stages

    Insights into the genetic architecture of morphological traits in two passerine bird species

    No full text
    Knowledge about the underlying genetic architecture of phenotypic traits is needed to understand and predict evolutionary dynamics. The number of causal loci, magnitude of the effects and location in the genome are, however, still largely unknown. Here, we use genome-wide single-nucleotide polymorphism (SNP) data from two large-scale data sets on house sparrows and collared flycatchers to examine the genetic architecture of different morphological traits (tarsus length, wing length, body mass, bill depth, bill length, total and visible badge size and white wing patches). Genomic heritabilities were estimated using relatedness calculated from SNPs. The proportion of variance captured by the SNPs (SNP-based heritability) was lower in house sparrows compared with collared flycatchers, as expected given marker density (6348 SNPs in house sparrows versus 38 689 SNPs in collared flycatchers). Indeed, after downsampling to similar SNP density and sample size, this estimate was no longer markedly different between species. Chromosome-partitioning analyses demonstrated that the proportion of variance explained by each chromosome was significantly positively related to the chromosome size for some traits and, generally, that larger chromosomes tended to explain proportionally more variation than smaller chromosomes. Finally, we found two genome-wide significant associations with very small-effect sizes. One SNP on chromosome 20 was associated with bill length in house sparrows and explained 1.2% of phenotypic variation (VP), and one SNP on chromosome 4 was associated with tarsus length in collared flycatchers (3% of VP). Although we cannot exclude the possibility of undetected large-effect loci, our results indicate a polygenic basis for morphological traits
    corecore