20 research outputs found

    Tracking aftershock sequences using empirical matched field processing

    Get PDF
    Extensive aftershock sequences present a significant problem to seismological data centres attempting to produce near real-time comprehensive seismic event bulletins. An elevated number of events to process and poorer performance of automatic phase association algorithms can lead to large delays in processing and a greatly increased human workload. Global monitoring is often performed using seismic array stations at considerable distances from the events involved. Empirical matched field processing (EMFP) is a narrow-frequency band array signal processing technique that recognizes the inter-sensor phase and amplitude relations associated with wavefronts approaching a sensor array from a given direction. We demonstrate that EMFP, using a template obtained from the first P arrival from the main shock alone, can efficiently detect and identify P arrivals on that array from subsequent events in the aftershock zone with exceptionally few false alarms (signals from other sources). The empirical wavefield template encodes all the narrow-band phase and amplitude relations observed for the main shock signal. These relations are also often robust and repeatable characteristics of signals from nearby events. The EMFP detection statistic compares the phase and amplitude relations at a given time in the incoming data stream with those for the template and is sensitive to very short-duration signals with the required characteristics. Significant deviations from the plane-wavefront model that typically degrade the performance of standard beamforming techniques can enhance signal characterization using EMFP. Waveform correlation techniques typically perform poorly for aftershocks from large earthquakes due to the distances between hypocentres and the wide range of event magnitudes and source mechanisms. EMFP on remote seismic arrays mitigates these difficulties; the narrow-band nature of the procedure makes arrival identification less sensitive to the signals’ temporal form and spectral content. The empirical steering vectors derived for the main shock P arrival can reduce the frequency dependency of the slowness vector estimates. This property helps us to automatically screen out arrivals from outside of the aftershock zone. Standard array processing pipelines could be enhanced by including both plane-wave and empirical matched field steering vectors. This would maintain present capability for the plane-wave steering vectors and provide increased sensitivity and resolution for those sources for which we have empirical calibrations.Tracking aftershock sequences using empirical matched field processingacceptedVersio

    Multi-instrument observations of the Pajala fireball: origin, characteristics, and atmospheric implications

    Get PDF
    Meteor observations provide information about Solar System constituents and their influx onto Earth, their interaction processes in the atmosphere, as well as the neutral dynamics of the upper atmosphere. This study presents optical, radar, and infrasound measurements of a daytime fireball that occurred on 4 December 2020 at 13:30 UTC over Northeast Sweden. The fireball was recorded with two video cameras, allowing a trajectory determination to be made. The orbital parameters are compatible with the Northern Taurid meteor shower. The dynamic mass estimate based on the optical trajectory was found to be 0.6–1.7 kg, but this estimate can greatly vary from the true entry mass significantly due to the assumptions made. The meteor trail plasma was observed with an ionosonde as a sporadic E-like ionogram trace that lasted for 30 min. Infrasound emissions were detected at two sites, having propagation times consistent with a source location at an altitude of 80–90 km. Two VHF specular meteor radars observed a 6 minute long non-specular range spread trail echo as well as a faint head echo. Combined interferometric range-Doppler analysis of the meteor trail echoes at the two radars, allowed estimation of the mesospheric horizontal wind altitude profile, as well as tracking of the gradual deformation of the trail over time due to a prevailing neutral wind shear. This combined analysis indicates that the radar measurements of long-lived non-specular range-spread meteor trails produced by larger meteoroids can be used to measure the meteor radiant by observing the line traveled by the meteor. Furthermore, a multistatic meteor radar observation of these types of events can be used to estimate mesospheric neutral wind altitude profiles

    The European Plate Observing System and the Arctic

    Get PDF
    The European Plate Observing System (EPOS) aims to integrate existing infrastructures in the solid earth sciences into a single infrastructure, enabling earth scientists across Europe to combine, model, and interpret multidisciplinary datasets at different time and length scales. In particular, a primary objective is to integrate existing research infrastructures within the fields of seismology, geodesy, geophysics, geology, rock physics, and volcanology at a pan-European level. The added value of such integration is not visible through individual analyses of data from each research infrastructure; it needs to be understood in a long-term perspective that includes the time when changes implied by current scientific research results are fully realized and their societal impacts have become clear. EPOS is now entering its implementation phase following a four-year preparatory phase during which 18 member countries in Europe contributed more than 250 research infrastructures to the building of this pan-European vision. The Arctic covers a significant portion of the European plate and therefore plays an important part in research on the solid earth in Europe. However, the work environment in the Arctic is challenging. First, most of the European Plate boundary in the Arctic is offshore, and hence, sub-sea networks must be built for solid earth observation. Second, ice covers the Arctic Ocean where the European Plate boundary crosses through the Gakkel Ridge, so innovative technologies are needed to monitor solid earth deformation. Therefore, research collaboration with other disciplines such as physical oceanography, marine acoustics, and geo-biology is necessary. The establishment of efficient research infrastructures suitable for these challenging conditions is essential both to reduce costs and to stimulate multidisciplinary research.Le système European Plate Observing System (EPOS) vise l’intégration des infrastructures actuelles en sciences de la croûte terrestre afin de ne former qu’une seule infrastructure pour que les spécialistes des sciences de la Terre des quatre coins de l’Europe puissent combiner, modéliser et interpréter des ensembles de données multidisciplinaires moyennant diverses échelles de temps et de longueur. Un des principaux objectifs consiste plus particulièrement à intégrer les infrastructures de recherche existantes se rapportant aux domaines de la sismologie, de la géodésie, de la géophysique, de la géologie, de la physique des roches et de la volcanologie à l’échelle paneuropéenne. La valeur ajoutée de cette intégration n’est pas visible au moyen des analyses individuelles des données émanant de chaque infrastructure de recherche. Elle doit plutôt être considérée à la lumière d’une perspective à long terme, lorsque les changements qu’impliquent les résultats de recherche scientifique actuels auront été entièrement réalisés et que les incidences sur la société seront claires. Le système EPOS est en train d’amorcer sa phase de mise en oeuvre. Cette phase succède à la phase préparatoire de quatre ans pendant laquelle 18 pays membres de l’Europe ont soumis plus de 250 infrastructures de recherche en vue de l’édification de cette vision paneuropéenne. L’Arctique couvre une grande partie de la plaque européenne et par conséquent, il joue un rôle important dans les travaux de recherche portant sur la croûte terrestre en Europe. Cependant, le milieu de travail de l’Arctique n’est pas sans défis. Premièrement, la majorité de la limite de la plaque européenne se trouvant dans l’Arctique est située au large, ce qui signifie que des réseaux marins doivent être aménagés pour permettre l’observation de la croûte terrestre. Deuxièmement, de la glace recouvre l’océan Arctique, là où la limite de la plaque européenne traverse la dorsale de Gakkel, ce qui signifie qu’il faut recourir à des technologies innovatrices pour surveiller la déformation de la croûte terrestre. C’est pourquoi les travaux de recherche doivent nécessairement se faire en collaboration avec d’autres disciplines comme l’océanographie physique, l’acoustique marine et la géobiologie. L’établissement d’infrastructures de recherche efficaces capables de faire face à ces conditions rigoureuses s’avère essentiel, tant pour réduire les coûts que pour stimuler la recherche multidisciplinaire

    Illuminating the seismicity pattern of the October 8, 2005, M = 7.6 Kashmir earthquake aftershocks

    No full text
    The M=7.6 October 8, 2005, Kashmir earthquake generated thousands of aftershocks. Existing catalogs are coarse, omitting data from key stations and not correcting bias. We target arrivals on unexploited regional stations with optimized signal processing. A multiple event Bayesian relocation results in far more structured clusters of seismicity. All arrival data for the Bayesloc program is provided for reproduction of results and further study. Aftershocks of the October 8, 2005, M=7.6 Kashmir earthquake continued for many weeks and covered a region extending over an aperture exceeding 100 km. Several hundred events were recorded well at teleseismic distances while many hundreds more are only observed at regional distances. Existing earthquake catalogs for this sequence are poor given an unfavorable distribution of stations, a complex tectonic setting, lack of local and near-regional data, and under-exploitation of the most sensitive stations. Advances in automated signal processing, improvements in seismic velocity models, and innovations in multiple event location algorithms have made it worthwhile revisiting this sequence and attempting a large-scale relocation of the aftershocks. A vast number of new phase readings have been made on permanent and temporary seismic stations both at regional and teleseismic distances and the Bayesian hierachical multiple event location program Bayesloc was employed in multiple stages, resulting in a far more structured distribution to the seismicity. The relocated aftershocks fall mainly into two distinct clusters. One cluster lies predominantly North East of the Balaklot-Bagh Thrust and South of the Main Central Thrust, with the October 8 main shock at its most northern point. The second cluster occupies the Indus-Kohistan Seismic Zone, North of the Main Central Thrust and South of the Main Mantle Thrust. Both clusters lie North East of a NW-SE trending boundary almost parallel to the southern part of the surface rupture. An East South East trending strand of earthquakes extends from the most northerly turning point of the Main Central Thrust into the Kashmir Basin, and a scattering of events are located North of this line and South of the Main Mantle Thrust. The new location estimates result in those aftershocks with the most similar focal mechanisms being far more spatially clustered than in previously published catalogs. Mapping global CMT solutions before and after the relocation contributes to the confidence in the new epicenters and provides a clearer picture of how the source parameters vary over the aftershock region. All files required to reproduce the results using the Bayesloc program are provided

    Ratio-to-moving-average seismograms: a strategy for improving correlation detector performance

    No full text
    Correlation detectors are becoming a standard method for identifying seismic signals from repeating sources. These highly sensitive, source-specific detectors frequently facilitate a reduction in the detection threshold by around an order of magnitude. Detections are typically declared when the value of the correlation coefficient (CC), or a related statistic, exceeds significantly some measure of the variability of values over a longer time window. The performance of correlation detectors is often compromised by the presence of short duration, high-amplitude signals, which influence excessively the value of the CC. We suggest replacing the original seismograms with waveforms in which the value of each sample is replaced by the ratio of that value to a centred moving average of absolute values of the original waveform. These ratio-to-moving-average (RMA) seismograms are relatively featureless over long time intervals, but resemble greatly the original waveforms over short time windows and hence still capture the characteristic seismic fingerprint of a given source. We demonstrate a correlation detection calculation, which fails due to the presence of a high-amplitude signal interfering with part of the correlation window, but which succeeds when RMA seismograms are used due to the diminished influence of the interfering signal. We also demonstrate an example from an aftershock sequence where the CC traces are heavily modulated due to the high dynamic range of the original waveforms. This makes the setting of detection thresholds difficult and results in multiple peaks, which do not correspond to events in the vicinity of the master event. Repeating the calculation using RMA seismograms results in CC traces with a more well-defined detection threshold and most of the spurious detections are lost. The ability to set lower detection thresholds without increasing greatly the number of false alarms facilitates the robust detection of lower magnitude events

    Could the IMS Infrasound Stations Support a Global Network of Small Aperture Seismic Arrays?

    No full text
    The IMS infrasound arrays have up to 15 sites with apertures up to 3 km. They are distributed remarkably uniformly over the globe, providing excellent coverage of South America, Africa, and Antarctica. Therefore, many infrasound arrays are in regions thousands of kilometers from the closest seismic array. Existing 3-component seismic stations, co-located with infrasound arrays, show how typical seismic signals look at these locations. We estimate a theoretical array response assuming a seismometer at each infrasound sensor, although the true performance would depend upon both SNR and coherence. These properties can however only be determined experimentally and borehole deployments may be needed to record seismic data of sufficient quality. We demonstrate, from a purely geometrical perspective, that essentially all IMS infrasound array configurations would provide seismic arrays with acceptable slowness resolution. Such arrays in many regions would likely enhance significantly the seismic monitoring capability in parts of the world where only 3-component stations are currently available. Co-locating seismic and infrasound sensors would mitigate the development and operational costs due to shared infrastructure, and hosting countries might find such added capabilities valuable from a national perspective. The seismic data may allow far more information to be gleaned from the infrasound data. (Note that SRL papers at the time did not have abstracts. The above abstract was for a presentation with the same name held at the CTBTO Science and Technology Conference 2015.

    CTBT seismic monitoring using coherent and incoherent array processing

    Get PDF
    The detection and location capability of the International Monitoring System for small seismic events in the continental and oceanic regions surrounding the Sea of Japan is determined mainly by three primary seismic arrays: USRK, KSRS, and MJAR. Body wave arrivals are coherent on USRK and KSRS up to frequencies of around 4 Hz and classical array processing methods can detect and extract features for most regional signals on these stations. We demonstrate how empirical matched field processing (EMFP), a generalization of frequency-wavenumber or f-k analysis, can contribute to calibrated direction estimates which mitigate bias resulting from near-station geological structure. It does this by comparing the narrowband phase shifts between the signals on different sensors, observed at a given time, with corresponding measurements on signals from historical seismic events. The EMFP detection statistic is usually evaluated as a function of source location rather than slowness space and the size of the geographical footprint valid for EMFP templates is affected by array geometry, the available signal bandwidth, and Earth structure over the propagation path. The MJAR array has similar dimensions to KSRS but is sited in far more complex geology which results in poor parameter estimates with classical f-k analysis for all signals lacking energy at 1 Hz or below. EMFP mitigates the signal incoherence to some degree but the geographical footprint valid for a given matched field template on MJAR is very small. Spectrogram beamforming provides a robust detection algorithm for high-frequency signals at MJAR. The array aperture is large enough that f-k analysis performed on continuous AR-AIC functions, calculated from optimally bandpass-filtered signals at the different sites, can provide robust slowness estimates for regional P-waves. Given a significantly higher SNR for regional S-phases on the horizontal components of the 3-component site of MJAR, we would expect incoherent detection and estimation of S-phases to improve with 3-component sensors at all sites. Given the diversity of the IMS stations, and the diversity of the methods which provide optimal results for a given station, we advocate the development of seismic processing pipelines which can process highly heterogeneous inputs to help associate characteristics of the incoming signals with physical events

    A multi-station matched filter and coherent network processing approach to the automatic detection and relative location of seismic events

    No full text
    <p>Geophysical Research Abstracts</p> <p>Vol. 16, EGU2014-11880, 2014</p> <p>EGU General Assembly 2014</p> <p>© Author(s) 2014. CC Attribution 3.0 License.</p> <p>A multi-station matched filter and coherent network processing approach to the automatic detection and relative location of seismic events</p> <p>Steven J Gibbons, Sven Peter Näsholm, and Tormod Kværna</p> <p>NORSAR, Seismology, Kjeller, Norway ([email protected])</p> <p> </p> <p>Poster presented at the EGU 2014 General Assembly in Vienna</p> <p>27 April – 02 May 2014</p> <p>Correlation detectors facilitate seismic monitoring in the near vicinity of previously observed events at far lower detection thresholds than are possible using the methods applied in most existing processing pipelines. The use of seismic arrays has been demonstrated to be highly beneficial in pressing down the detection threshold, due to superior noise suppression, and also in eliminating vast numbers of false alarms by performing array processing on the multi-channel output of the correlation detectors. This last property means that it is highly desirable to run continuous detectors for sites of repeating seismic events on a single-array basis for many arrays across a global network. Spurious detections for a given signal template on a single array can however still occur when an unrelated wavefront crosses the array from a very similar direction to that of the master event wavefront. We present an algorithm which scans automatically the output from multiple stations – both array and 3-component – for coherence between the individual station correlator outputs that is consistent with a disturbance in the vicinity of the master event. The procedure results in a categorical rejection of an event hypothesis in the absence of support from stations other than the one generating the trigger and provides a fully automatic relative event location estimate when patterns in the correlation detector outputs are found to be consistent with a common event. This coherence-based approach removes the need to make explicit measurements of the time-differences for single stations and this eliminates a potential source of error. The method is demonstrated for the North Korea nuclear test site and the relative event location estimates obtained for the 2006, 2009, and 2013 events are compared with previous estimates from different station configurations.</p
    corecore