84 research outputs found

    Analysis of the kinematic boundaries of the quasielastic neutrino-nucleus cross section in the superscaling model with a relativistic effective mass

    Get PDF
    This work has been partially supported by the former Spanish Ministerio de Economia y Competitividad and ERDF (European Regional Development Fund) under Contract No. FIS2017-85053-C2-1P, by the Junta de AndalucĂ­a Grant No. FQM225, by Contract No. PID2020– 114767 GB-I00 funded by MCIN/ AEI /10.13039/ 501100011033, and by the Russian Science Foundation Grant No. 18-12-00271.In this work we obtain the analytical expressions for the boundaries of the charged current quasielastic (CCQE) double differential cross section in terms of dimensionless energy and momentum transfers, for the Relativistic Fermi Gas (RFG) and the Superscaling approach with relativistic effective mass (SuSAM∗) models, within the scaling formalism. In addition, we show that this double differential cross section in the scaling formalism has very good properties to be implemented in the Monte Carlo (MC) neutrino event generators, particularly because its peak is almost flat with the (anti)neutrino energy. This makes it especially well suited for the event generation by the acceptance-rejection method usually used in the neutrino generators. Finally, we analyze the total CCQE cross section σ(EÎœ) for both models and attribute the enhancement observed in the SuSAM∗ total cross section to the high-momentum components which are present, in a phenomenological way, in its scaling function, while these are absent in the RFG model.Spanish Ministerio de Economia y CompetitividadEuropean Regional Development FundJunta de AndalucĂ­aRussian Science Foundatio

    Observable Neutron-Antineutron Oscillations in Seesaw Models of Neutrino Mass

    Get PDF
    We show that in a large class of supersymmetric models with spontaneously broken B-L symmetry, neutron--antineutron oscillations occur at an observable level even though the scale of B-L breaking is very high, v_{B-L} ~ 2 x 10^{16} GeV, as suggested by gauge coupling unification and neutrino masses. We illustrate this phenomenon in the context of a recently proposed class of seesaw models that solves the strong CP problem and the SUSY phase problem using parity symmetry. We obtain an upper limit on N-\bar{N} oscillation time in these models, \tau_{N-\bar{N}} < 10^{9} -10^{10} sec. This suggests that a modest improvement in the current limit on \tau_{N-\bar{N}} of 0.86 x 10^8 sec will either lead to the discovery of N-\bar{N} oscillations, or will considerably restrict the allowed parameter space of an interesting class of neutrino mass models.Comment: 11 pages RevTeX, 1 figur

    Radiative Seesaw Mechanism at Weak Scale

    Get PDF
    We investigate an alternative seesaw mechanism for neutrino mass generation. Neutrino mass is generated at loop level but the basic concept of usual seesaw mechanism is kept. One simple model is constructed to show how this mechanism is realized. The applications of this seesaw mechanism at weak scale to cosmology and neutrino physics are discussed.Comment: 12 Pages, latex, no figure

    Leptogenesis and neutrino parameters

    Get PDF
    We calculate the baryonic asymmetry of the universe in the baryogenesis-via-leptogenesis framework, assuming first a quark-lepton symmetry and then a charged-neutral lepton symmetry. We match the results with the experimentally favoured range. In the first case all the oscillation solutions to the solar neutrino problem, except the large mixing matter solution, can lead to the allowed range, but with fine tuning of the parameters. In the second case the general result is quite similar. Some related theoretical hints are discussed.Comment: RevTex, 21 pages with 8 figure

    Quasielastic axial-vector mass from experiments on neutrino-nucleus scattering

    Get PDF
    We analyze available experimental data on the total and differential charged-current cross sections for quasielastic neutrino and antineutrino scattering off nucleons, measured with a variety of nuclear targets in the accelerator experiments at ANL, BNL, FNAL, CERN, and IHEP, dating from the end of sixties to the present day. The data are used to adjust the poorly known value of the axial-vector mass of the nucleon.Comment: 27 pages, 19 figures. Typos corrected; tables, figures and references added, discussion extended; matches published versio

    New Ways to Leptogenesis with Gauged B-L Symmetry

    Get PDF
    We show that in supersymmetric models with gauged B-L symmetry, there is a new source for cosmological lepton asymmetry. The Higgs bosons responsible for B-L gauge symmetry breaking decay dominantly into right-handed sneutrinos \tilde{N} and \tilde{N}* producing an asymmetry in \tilde{N} over \tilde{N}*. This can be fully converted into ordinary lepton asymmetry in the decays of \tilde{N}. In simple models with gauged B-L symmetry we show that resonant/soft leptogenesis is naturally realized. Supersymmetry guarantees quasi-degenerate scalar states, while soft breaking of SUSY provides the needed CP violation. Acceptable values of baryon asymmetry are obtained without causing serious problems with gravitino abundance.Comment: 14 pp, LaTeX, 2 eps figures, typos fixe

    Minimal Supersymmetric Pati-Salam Theory: Determination of Physical Scales

    Get PDF
    We systematically study the minimal supersymmetric Pati-Salam theory, paying special attention to the unification constraints. We find that the SU(4)_c scale M_c and the Left-Right scale M_R lie in the range 10^{10} GeV < M_c < 10^{14} GeV, 10^{3} GeV < M_R <10^{10} GeV (with single-step breaking at 10^{10} GeV), giving a potentially accessible scale of parity breaking. The theory includes the possibility of having doubly-charged supermultiplets at the supersymmetry breaking scale; color octet states with mass of order M_R^2/M_c; magnetic monopoles of intermediate mass that do not conflict with cosmology, and a 'clean' (type I) form for the see-saw mechanism of neutrino mass.Comment: 5 page

    Seesaw mechanism, baryon asymmetry and neutrinoless double beta decay

    Full text link
    A simplified but very instructive analysis of the seesaw mechanism is here performed. Assuming a nearly diagonal Dirac neutrino mass matrix, we study the forms of the Majorana mass matrix of right-handed neutrinos, which reproduce the effective mass matrix of left-handed neutrinos. As a further step, the important effect of a non diagonal Dirac neutrino mass matrix is explored. The corresponding implications for the baryogenesis via leptogenesis and for the neutrinoless double beta decay are reviewed. We propose two distinct models where the baryon asymmetry is enhanced.Comment: 21 pages, RevTex. Revise

    Ultra-High Energy Cosmic Rays from Neutrino Emitting Acceleration Sources?

    Get PDF
    We demonstrate by numerical flux calculations that neutrino beams producing the observed highest energy cosmic rays by weak interactions with the relic neutrino background require a non-uniform distribution of sources. Such sources have to accelerate protons at least up to 10^{23} eV, have to be opaque to their primary protons, and should emit the secondary photons unavoidably produced together with the neutrinos only in the sub-MeV region to avoid conflict with the diffuse gamma-ray background measured by the EGRET experiment. Even if such a source class exists, the resulting large uncertainties in the parameters involved in this scenario does currently not allow to extract any meaningful information on absolute neutrino masses.Comment: 6 pages, 4 figures, RevTeX styl

    Neutrino Quasielastic Scattering on Nuclear Targets: Parametrizing Transverse Enhancement (Meson Exchange Currents)

    Get PDF
    We present a parametrization of the observed enhancement in the transverse electron quasielastic (QE) response function for nucleons bound in carbon as a function of the square of the four momentum transfer (Q2Q^2) in terms of a correction to the magnetic form factors of bound nucleons. The parametrization should also be applicable to the transverse cross section in neutrino scattering. If the transverse enhancement originates from meson exchange currents (MEC), then it is theoretically expected that any enhancement in the longitudinal or axial contributions is small. We present the predictions of the "Transverse Enhancement" model (which is based on electron scattering data only) for the ΜΌ,ΜˉΌ\nu_\mu, \bar{\nu}_\mu differential and total QE cross sections for nucleons bound in carbon. The Q2Q^2 dependence of the transverse enhancement is observed to resolve much of the long standing discrepancy in the QE total cross sections and differential distributions between low energy and high energy neutrino experiments on nuclear targets.Comment: Revised Version- July 21, 2011: 17 pages, 20 Figures. To be published in Eur. Phys. J.
    • 

    corecore