77 research outputs found

    Szerkesztői előszó

    Get PDF

    Probing Water State during Lipidic Mesophases Phase Transitions

    Get PDF
    We investigate the static and dynamic states of water network during the phase transitions from double gyroid ((Formula presented.)) to double diamond ((Formula presented.)) bicontinuous cubic phases and from the latter to the reverse hexagonal (HII) phase in monolinolein based lipidic mesophases by combining FTIR and broadband dielectric spectroscopy (BDS). In both cubic(s) and HII phase, two dynamically different fractions of water are detected and attributed to bound and interstitial free water. The dynamics of the two water fractions are all slower than bulk water due to the hydrogen-bonds between water molecules and the lipid's polar headgroups and to nanoconfinement. Both FTIR and BDS results suggest that a larger fraction of water is hydrogen-bonded to the headgroup of lipids in the HII phase at higher temperature than in the cubic phase at lower temperature via H-bonds, which is different from the common expectation that the number of H-bonds should decrease with increase of temperature. These findings are rationalized by considering the topological ratio of interface/volume of the two mesophases.ISSN:1433-7851ISSN:1521-3773ISSN:0570-083

    Recent advances in the aqueous chemistry of the calcium(II)-gluconate system – Equilibria, structure and composition of the complexes forming in neutral and in alkaline solutions

    Get PDF
    Of the sugar carboxylates, D-gluconate is clearly the most significant representative: the world’s annual production of this organic compound is estimated to be in the order of 105^{5} tonnes. The reason of its mass production is due to its outstandingly broad range of practical (medical, pharmaceutical, industrial, etc.) applications. D-gluconate is a well-known and exceptionally popular complexing agent; accordingly, it has been the subject of a large number of coordination chemical research investigations. Its complexation properties are specially remarkable in alkaline to hyperalkaline pH conditions, where the deprotonation of one or more of its alcoholic OH groups provides a favourable frame for the formation of very stable chelate complexes with a large variety of metal cations. With the aim to show the state of the art of some relevant issues in the aqueous chemistry of the D-gluconate ion, the current paper focusses on the acidbase properties and calcium(II) complexation of the compound encompassing the entire experimentally available pH-range in water. The accessible literature on the deprotonation of carboxylic and alcoholic OH groups is collected and critically evaluated. The lactonization equilibria of D-gluconic acid are also scrutinized. The available data on the calcium complexes forming in neutral and in (hyper)alkaline solutions (both in terms of composition, formation constants and solution structure) are also discussed. Where feasible, some of these properties are compared with those of D-glucose and its derivatives as well as some less common sugar carboxylates, structurally related to D-gluconate, (i.e., D-heptagluconate, Lgulonate and α-D-isosaccharinate). Special emphasis is laid on the relationship between complex stability and the type of metal-binding groups
    corecore