THE SYNTHESIS AND NEUTRALIZATION OF HYDROXYSODALITE

Eszter Kása¹, Bence Kutus², Pál Sipos²

¹Department of Organic Chemistry, University of Szeged, H-6720 Szeged, Dóm tér 8, Hungary

²Department of Inorganic and Analytical Chemistry, University of Szeged, H-6720 Szeged, Dóm tér 7, Hungary

e-mail: eszterorban94@chem.u-szeged.hu

Alumina is typically refined from bauxite ore via the Bayer process, which annually generates more than 2.7 billion tons of red mud/bauxite residue worldwide, and this quantity is still growing by 120 million tons per annum [1]. Currently, almost all bauxite residue is stored indefinitely in land-based red-mud disposal areas, bearing potential environmental risks associated primarily with its alkalinity. Therefore, the decreasing the causticity by means of neutralization is crucial for sustainable alumina production.

Sodalite (SOD, Na₆[Al₆Si₆O₂₄]×2NaX, where X can be OH⁻, Cl⁻, NO₃⁻, ½CO₃²⁻, or ½SO₄²⁻) is the dominant phase of all by-products forming during the Bayer process, beside hematite [2]. Although sodalite can contain many different anions (depending on the medium), the isomorph containing OH⁻ is especially important concerning the alkalinity. Hence, this study focuses on the preparation of hydroxysodalite (HS, Na₈Al₆Si₆O₂₄(OH)₂) under well-controlled conditions and the neutralization of this aluminosilicate by hydrochloric acid.

Overall, we found a synthesis method that yields hydroxysodalite with unique cubic morphology. Moreover, our findings shed light on the time duration and mechanism of neutralization of this sodalite.

Acknowledgement

Eszter Kása thanks for the financial support by the National Talent Program (NTP-NFTÖ-22-B-0064) from the source of Human Resource Support Operator.

References

- [1] M. Gräfe, C. Klauber, Hydrometallurgy 108 (2011) 46.
- [2] J. Vogrin, T. Santini, H. Peng, J. Vaughan, Micropor. Mesopor. Mat. 299 (2020) 110086.