33 research outputs found

    Expression of Retina-Specific Genes by Mouse Retinoblastoma Cells

    Get PDF
    Purpose. Two cell lines derived from ocular tumors of a transgenic mouse expressing the SV40 large T antigen have been established as models of human retinoblastoma. One line, TM, originated from a metastasis, and the other, TE, originated from the primary tumor. The authors compared these two lines with the normal adult mouse eye by analysis of the expression of five photoreceptor cell-specific proteins: IRBP, opsin, rod-and cone-specific transducins, and S-antigen. The authors sought to determine which of these proteins was expressed qualitatively and to examine semi-quantitatively for changes in the levels of expression in the cell lines. Method. Western blot analysis was used to detect photoreceptor-specific intracellular or secreted proteins. Total RNA was prepared from cultured cells or from mouse adult whole eye. Specific messenger levels in total RNA were determined either by northern hybridization analysis or by a semi-quantitative polymerase chain reaction (PCR), coupled to complementary DNA (cDNA) substrates prepared from total RNA. Results. IRBP was present in the retinoblastoma cell lines and secreted into the medium. Neither S-antigen nor opsin were detectable by immunoblotting. IRBP and cone transducin mRNA were present in both cell lines. In contrast, opsin, rod transducin, and S-Antigen mRNAs were not detectable by PCR. /3-actin was present in the mRNA populations of whole eye and retinoblastoma. SV40 large T antigen mRNA was present only in retinoblastoma cells. Conclusions. IRBP and cone transducin expression in mouse retinoblastoma cells is independent of signaling provided direcdy or indirecdy dirough large T antigen or Rb ]0 5 regulatory cascades. The pattern of photoreceptor-specific gene expression is similar to that seen in human retinoblastoma cell lines. These murine-derived cell lines may be useful as a tool to study IRBP and cone transducin expression in vitro and to determine early retinoblast expression patterns in the mouse. Invest Ophthalmol Vis Sci. 1994;35:3931-3937. J. he sequence of events in visual transduction and retinal development involves a series of proteins, many of which are expressed in the photoreceptor cells

    Outbreaks of Pneumocystis Pneumonia in 2 Renal Transplant Centers Linked to a Single Strain of Pneumocystis: Implications for Transmission and Virulence

    Get PDF
    By restriction fragment length polymorphism analysis, 2 outbreaks of Pneumocystis pneumonia in renal transplant patients in Europe were shown to be caused by the same strain of Pneumocystis; another outbreak in Japan was caused by a different strai

    Medium-Term Complications Associated With Coronary Artery Aneurysms After Kawasaki Disease: A Study From the International Kawasaki Disease Registry.

    Get PDF
    Background Coronary artery aneurysms (CAAs) may occur after Kawasaki disease (KD) and lead to important morbidity and mortality. As CAA in patients with KD are rare and heterogeneous lesions, prognostication and risk stratification are difficult. We sought to derive the cumulative risk and associated factors for cardiovascular complications in patients with CAAs after KD. Methods and Results A 34-institution international registry of 1651 patients with KD who had CAAs (maximum CA

    Diversity and Complexity of the Large Surface Protein Family in the Compacted Genomes of Multiple Pneumocystis Species

    Get PDF
    Pneumocystis, a major opportunistic pathogen in patients with a broad range of immunodeficiencies, contains abundant surface proteins encoded by a multicopy gene family, termed the major surface glycoprotein (Msg) gene superfamily. This superfamily has been identified in all Pneumocystis species characterized to date, highlighting its important role in Pneumocystis biology. In this report, through a comprehensive and in-depth characterization of 459 msg genes from 7 Pneurnocystis species, we demonstrate, for the first time, the phylogeny and evolution of conserved domains in Msg proteins and provide a detailed description of the classification, unique characteristics, and phylogenetic relatedness of five Msg families. We further describe, for the first time, the relative expression levels of individual msg families in two rodent Pneumocystis species, the substantial variability of the msg repertoires in P. coda from laboratory and wild rats, and the distinct features of the expression site for the classic msg genes in Pneumocystis from 8 mammalian host species. Our analysis suggests multiple functions for this superfamily rather than just conferring antigenic variation to allow immune evasion as previously believed. This study provides a rich source of information that lays the foundation for the continued experimental exploration of the functions of the Msg superfamily in Pneumocystis biology. IMPORTANCE Pneumocystis continues to be a major cause of disease in humans with immunodeficiency, especially those with HIV/AIDS and organ transplants, and is being seen with increasing frequency worldwide in patients treated with immunode-pleting monoclonal antibodies. Annual health care associated with Pneumocystis pneumonia costs similar to$475 million dollars in the United States alone. In addition to causing overt disease in immunodeficient individuals, Pneumocystis can cause subclinical infection or colonization in healthy individuals, which may play an important role in species preservation and disease transmission. Our work sheds new light on the diversity and complexity of the msg superfamily and strongly suggests that the versatility of this superfamily reflects multiple functions, including antigenic variation to allow immune evasion and optimal adaptation to host environmental conditions to promote efficient infection and transmission. These findings are essential to consider in developing new diagnostic and therapeutic strategies.Peer reviewe

    A Single-Copy Gene Encodes Kex1, a Serine Endoprotease of Pneumocystis jiroveci

    No full text
    We have cloned and characterized the kex1 gene of Pneumocystis jiroveci. Unlike the case for Pneumocystis carinii, in which the homologous PRT-1 genes are multicopy, kex1 is a single-copy gene encoding a protein homologous to fungal serine endoproteases, which localize to the Golgi apparatus. Thus, substantial biological differences can be seen among Pneumocystis species

    Pneumocystis Encodes a Functional S-Adenosylmethionine Synthetase Geneâ–¿

    No full text
    S-Adenosylmethionine (AdoMet) synthetase (EC 2.5.1.6) is the enzyme that catalyzes the synthesis of AdoMet, a molecule important for all cellular organisms. We have cloned and characterized an AdoMet synthetase gene (sam1) from Pneumocystis spp. This gene was transcribed primarily as an ∼1.3-kb mRNA which encodes a protein containing 381 amino acids in P. carinii or P. murina and 382 amino acids in P. jirovecii. sam1 was also transcribed as part of an apparent polycistronic transcript of ∼5.6 kb, together with a putative chromatin remodeling protein homologous to Saccharomyces cerevisiae, CHD1. Recombinant Sam1, when expressed in Escherichia coli, showed functional enzyme activity. Immunoprecipitation and confocal immunofluorescence analysis using an antipeptide antibody showed that this enzyme is expressed in P. murina. Thus, Pneumocystis, like other organisms, can synthesize its own AdoMet and may not depend on its host for the supply of this important molecule
    corecore