25 research outputs found

    The fractional Fourier transform and harmonic oscillation

    Get PDF
    The ath-order fractional Fourier transform is a generalization of the ordinary Fourier transform such that the zeroth-order fractional Fourier transform operation is equal to the identity operation and the first-order fractional Fourier transform is equal to the ordinary Fourier transform. This paper discusses the relationship of the fractional Fourier transform to harmonic oscillation; both correspond to rotation in phase space. Various important properties of the transform are discussed along with examples of common transforms. Some of the applications of the transform are briefly reviewed

    The fractional fourier transform

    Get PDF
    A brief introduction to the fractional Fourier transform and its properties is given. Its relation to phase-space representations (time- or space-frequency representations) and the concept of fractional Fourier domains are discussed. An overview of applications which have so far received interest are given and some potential application areas remaining to be explored are noted. © 2001 EUCA

    Linear algebraic theory of partial coherence: Continuous fields and measures of partial coherence

    Get PDF
    This work presents a linear algebraic theory of partial coherence for optical fields of continuous variables. This approach facilitates use of linear algebraic techniques and makes it possible to precisely define the concepts of incoherence and coherence in a mathematical way. We have proposed five scalar measures for the degree of partial coherence. These measures are zero for incoherent fields, unity for fully coherent fields, and between zero and one for partially coherent fields. � 2016 Optical Society of America

    Optical implementation of linear canonical transforms

    Get PDF
    We consider optical implementation of arbitrary one-dimensional and two-dimensional linear canonical and fractional Fourier transforms using lenses and sections of free space. We discuss canonical decompositions, which are generalizations of common Fourier transforming setups. We also look at the implementation of linear canonical transforms based on phase-space rotators. © Springer International Publishing Switzerland 2016

    Enhancement of images corrupted with signal dependent noise: Application to ultrasonic imaging

    Get PDF
    An adaptive filter for smoothing images corrupted by signal dependent noise is presented. The filter is mainly developed for speckle suppression in medical B-scan ultrasonic imaging. The filter is based on mean filtering of the image using appropriately shaped and sized local kernels. Each filtering kernel, fitting to the local homogeneous region, is obtained through local statistics based region growing. Performance of the proposed scheme have been tested on a B-scan image of a standard tissue-mimicking ultrasound resolution phantom. The results indicate that the filter effectively reduces the speckle while preserving the resolvable details. The performance figures obtained through computer simulations on the phantom image are presented in a comparative way with some existing speckle iippression schemes

    The fractional Fourier transform and its applications to image representation and beamforming

    Get PDF
    The ath order fractional Fourier transform operator is the ath power of the ordinary Fourier transform operator. We provide a brief introduction to the fractional Fourier transform, discuss some of its more important properties, and concentrate on its applications to image representation and compression, and beamforming. We show that improved performance can be obtained by employing the fractional Fourier transform instead of the ordinary Fourier transform in these applications

    Fractional Fourier domain decomposition

    Get PDF
    We introduce the fractional Fourier domain decomposition. A procedure called pruning, analogous to truncation of the singular-value decomposition, underlies a number of potential applications, among which we discuss fast implementation of space-variant linear systems

    Continuous and discrete fractional Fourier domain decomposition

    Get PDF
    We introduce the fractional Fourier domain decomposition for continuous and discrete signals and systems. A procedure called pruning, analogous to truncation of the singular-value decomposition, underlies a number of potential applications, among which we discuss fast implementation of space-variant linear systems

    The discrete harmonic oscillator, Harper's equation, and the discrete fractional Fourier transform

    Get PDF
    Certain solutions to Harper's equation are discrete analogues of (and approximations to) the Hermite-Gaussian functions. They are the energy eigenfunctions of a discrete algebraic analogue of the harmonic oscillator, and they lead to a definition of a discrete fractional Fourier transform (FT). The discrete fractional FT is essentially the time-evolution operator of the discrete harmonic oscillator

    Space-bandwidth-efficient realizations of linear systems

    Get PDF
    One can obtain either exact realizations or useful approximations of linear systems or matrix-vector products that arise in many different applications by implementing them in the form of multistage or multichannel fractional Fourier-domain filters, resulting in space-bandwidth-efficient systems with acceptable decreases in accuracy. Varying the number and the configuration of filters enables one to trade off between accuracy and efficiency in a flexible manner. The proposed scheme constitutes a systematic way of exploiting the regularity or structure of a given linear system or matrix, even when that structure is not readily apparent. © 1998 Optical Society of America
    corecore