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ABSTRACT operator#? is equal to the identity operatdr. The first-order

The ath order fractional Fourier transform operator is the fractional Fourier transform operatgi! is equal to the ordinary
ath power of the ordinary Fourier transform operator. We pro- Fourier transform operator. Thus the Oth order fractional Fourier
vide a brief introduction to the fractional Fourier transform, dis-  transform of the functiorf (u) is merely the function itself, and
cuss some of its more important properties, and concentrate on the 1st order transform is its ordinary Fourier transfdfif),
its applications to image representation and compression, and wherep denotes the frequency domain variable. Integer values
beamforming. We show that improved performance can be ob- of a correspond to repeated application of the Fourier transform
tained by employing the fractional Fourier transform instead of and 7~ corresponds to the inverse Fourier transform operator.
the ordinary Fourier transform in these applications. The @'th order transform of thath order transform is equal to

the (& + a)th order transform; that ig@ 72 = F@+2 _ a prop-
erty referred to as index additivity. The ordemay assume any
Introduction real value, however the operat$® is periodic ina with period

The ordinary Fourier transform (FT) and related techniques 4 thatis7#4 = 72 wherej is any integer. This is becaug’ei
are of great importance in diverse fields of science and engineer- €4uals the parity operatdr which mapsf (u) to f(—~u) and ¥
ing. The fractional Fourier transform is a generalization of the €duals the identity operator. Therefore, the ranga isfusually
ordinary Fourier transform with an order (or power) paramater ~ restricted ta—2,2] or [0,4).
It has found many applications in signal and image processing, ~ The earliest papers related to this transform go back to the
communications, and optics and wave propagation. The purpose1920s and 1930s; since then the transform has been reinvented
of this paper is to provide a brief introduction to the fractional several times. It has received the attention of a few mathe-
Fourier transform (FrFT) together with some of its more impor- Maticians during the eighties [3-5]. However, interest in the
tant properties, and to discuss its applications in image represen-transform really grew with its reinvention/reintroduction by re-
tation and beamforming. Those interested in learning more about searchers in the fields of optics and signal processing, who no-
the transform are referred to a recent book on the subject [1] or ticed its relevance for a variety of application areas [6-8, 29].

the chapter-length treatment [2]. Further historical references and a comprehensive bibliography
Mathematically theath order fractional Fourier transform  may be found in [1].
operator is theath power of the ordinary Fourier transform op- It is quite surprising that while fractional differentiation and

erator. If we denote the ordinary Fourier transform operator by integration have received a significant amount of attention for
F, then theath order fractional Fourier transform operator is a very long time, the fractional Fourier transform has received
denoted by¥2. The zeroth-order fractional Fourier transform very little attention until about ten years ago. Fractional deriva-
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tives and fractional Fourier transforms are both fractional opera- form as follows:

tor powers and thus share certain properties. For instance, both

the zeroth order fractional derivative and the zeroth order frac- fa(u) = /m Ka(u, ') f (U dU, (1)
tional Fourier transform are equal to the identity operation. Like- —co0

wise, the first order fractional Fourier transform is equal to the Ka(u,U) = Aq exp{in(cota u? — 2¢csax ul + cota u’2) 7
ordinary Fourier transform and the first order fractional deriva-

tive is equal to the ordinary derivative. Both operations satisfy Ay, =V1—icota o=
index additivity: repeated applications correspond to a single ap-
plication of order equal to the sum of the individual applications.
The fractional Fourier transform is defined so as to have the same
eigenfunctions as the ordinary Fourier transform but eigenvalues
raised to the fractional power. The same applies to fractional
differentiation which has the same eigenfunctions as ordinary
differentiation but eigenvalues raised to the fractional power in
question.

amn
2

whena# 2j. Whena= 4] the transform is defined &g (u,u’) =
O(u—u) and whena = 4j + 2 the transform is defined as
Ka(u,u') = 8(u+U'). It can be shown that the above kernel for
a # 2j indeed approaches these delta function kerneks &3
proaches even integers.

The transform as defined above is indeed the operator power
of the FT. In order to see this, we first consider the eigenvalue

A further intriguing point follows from a particular way of ~ €duation of the FT:
defining fractional derivatives. Thath fractional derivative may —inT/2
: : : L . = . 2
be defined as that operation corresponding to multiplication with Fdn(u)=e Wn(u) @
the ath power of the frequency variable in the ordinary Fourier
domain. Therefore one is led to inquire what kind of fractional ) T o1/4 ) annt e 5
operation would be obtained if a similar definition was con- defined aspn(u) = (27%/v 2! ) Hn(v21u) exp(-—Tur’), where

structed in terms of the fractional Fourier transform. Such an H“(u). are the standgrd Herrmte polynom|als>§p( in1/2) is
: B : » the eigenvalue associated with thtl eigenfunctionp,(u). The
operation may perhaps be referred to as a “doubly fractional i . . .
T : L fractional Fourier transform may then be defined such that it has
derivative and seems worthy of further investigation.

the same eigenfunctions but the eigenvalues raised t@tthe

The fractional Fourier transform has been found to have sev- POWer:
eral applications in the area known as optical information pro-
cessing where it allows a reformulation of this area in a more
general way than that found in standard texts [1]. The trans-
form also led to generalizations of the concepts of the time and
frequency domains and this resulted in many applications in the
area of signal processing [1]. In this paper two applications of
the transform in signal processing are given. First a novel way
of representing images based on fractional Fourier domain fil-
tering configurations [2, 19], leading to a method for compress-
ing images, will be presented. Then the application of the frac-
tional Fourier transform to a beam-forming problem will be dis-

Herey,(u),n=0,1,2... denote the Hermite-Gaussian functions

F2Wn(u) = (€"2)3n(u). (3)

This definition is not unique for a number of reasons [1]. The
particular definition which has so far received the greatest at-
tention, has the most elegant properties, and which has found
the most applications follows from choosifexp(—inT/2)]2 =
exp(—iant/2). The fractional Fourier transform of a square-
integrable functionf (u) can then be found by first expanding

it in terms of the Hermite-Gaussian functions as

cussed [20]. Basically beam-forming refers to filtering of sig- f(u) = Z)Cnlpn(u), (4)
nals received by distributed sensors. Acceleration of the source n=

causes sinusoidal signals to arrive at the sensors as chirp signals. Co= /qJn(u) f(u)du, (5)
The motivation behind the proposed method is the ability of the

fractional Fourier transform to process the chirp signals better

than the ordinary Fourier transform. and then applying® to both sides to obtain
Fof(u) = Z)Cnfalbn(u) (6)
n=
fa(u) = Z)cne*ia””/zwn(ux (7)
Definition n=

The ath order fractional Fourier transform of the function fa(u) :/
f(u) is often denoted by,(u) and defined as an integral trans-

ie‘ia”“/zwnw)wn(u')]f(u’)dd (8)
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The final form can be shown to be equal to that given by equa- Parseval [ f*(u)g(u)du= [ f;(u)ga(u)du. This property

tion 1 through a standard identity. is equivalent to unitarity. Energy or norm conservati&n|f] =
As an example, we plot the magnitude of the fractional En[fa] or ||f|| = | fa||) is a special case.

Fourier transforms of the rectangle function for different val- Time reversal: Let P denote the parity operato®|[f (u)] =

ues of the ordea € [0,1] in figure 1. Asa varies fromO to 1, f(—u), then

the rectangle function continuously evolves into a sinc function,

which is the ordinary Fourier transform of the rectangle function. Fap _ pga (9)

Such two-dimensional functionfg(u) with variablesa andu are a

known as rectangular time-order or space-order representations FAH U] = fa(-u) (10)

of the functionf (u), depending on whether the variahiés in-

terpreted as time or space [1]. Transform of a scaled function Let My and Q; denote

the scalingMy [ f (u)] = |M|~%2f(u/M) and chirp multiplication
Qlf(u)] = e*‘”quzf(u) operators respectively. Then

Fo My =
Q&—cotd(l—(cos?u’)/(cosza))] W[[Msina’/sina] e, (11)
FAMIH2E (u/M)]) =

_ , Musina’
émzcota(lf(cosza )/(coga)) fol —— ). 12
Ca \ sina 42

Herea’ = arctarfM—2tana) anda’ is taken to be in the same
quadrant ast, Cq = /(1 —icota)/(1—iMZcota). This prop-
erty is the generalization of the scaling property of the FT stating
that the FT off(u/M) is [M|F(Mp). Notice that the FrFT of
f(u/M) cannot be expressed as a scaled versiofy @f) for the

same ordea.
_ Transform of a shifted function: Let S#, and PH ,
Figure 1. denote the shifts#,[f(u)] = f(u—up) and the phase shift

PH ,[f(u)] = exp(i2rypu) f (u) operators respectively. Then

FRSH = SO par o SH oo, (13)

Properties ’,}—a[f (u— UO)} _ einu%sinu cost —i2mit sina fa(u —Uo COSG).
Linearity : 723 kb fi(u)] = 3 bk [F2fi(u)]. (14)
Integer orders: Whena is equal to an integek, the ath

order FrFT is equivalent to thigh integer power of FT, defined ) ] )
by repeated application. It also follows thaf =  (the parity We see that théﬂuo operator, which simply re;ults in a transla-
operator),73 = # -1 = (#)~1 (the inverse transform operator), tion in theu domain, corresponds to a translation followed by a

F4— 9 [ (the identity operator), and | = & imod4 phase shift in thath fractional domain. The amount of transla-
tion and phase shift is given by cosine and sine multipliers which

Inverse: (F2)~1 = F~2. In terms of the kernel, this prop- X ; e
can be interpreted in terms of “projections” between the axes.

erty is stated a&; 1 (u,u') = K_a(u,u).

Unitarity ; (F3)1 = (7)1 — 72 where()" denotes the Transform of a phase-shifted function

conjugate transpose of the operator. In terms of the kernel, this

property can stated &§; 1 (u,u’) = K3 (U, u). FAPH,, = g~ imgsina cosa PH ycosa SHygsina  (15)
Index additivity : F2F& = F&+a1_ |n terms of kernels o i2 )

this can be written aa, 1 a, (U, ') = [ Ka, (U, U")Kq, (U”, 1) dU". FAf(u—up)] = g 'THSINACOMGZTUROCOSI £, (y — Py sina) (16)
Commutativity : FR2Fd4 = Fa1Fa,
Associativity: FB(F2Fa) = (FRF)Fa, Similar to the shift operator, the phase-shift operator which sim-
Eigenfunctions 2[Wn(u)] = exp(—iantt/2)Yn(u). ply results in a phase shift in the domain, corresponds to a
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translation followed by a phase shift in thth fractional domain. The many properties of the Wigner distribution [9] support its

Again the amount of translation and phase shift are given by co- interpretation as a function giving the distribution of signal en-

sine and sine multipliers. ergy in the time/space-frequency plane. Three of the important
Transform of a coordinate multiplied function: Let U properties of the Wigner distribution are

and 9 denote the coordinate multiplicatioti[f(u)] = uf(u)

and differentiation?D[f (u)] = (i2m)~*d f(u)/du operators re-
spectively. Then /Wf(l# W) dp= Ro[Ws (U, p)] = [ (u)

[ We(udu= ReoWi(up] = [FWE (@3)

2, (22)

FaU" = [cosa U —sina D|"F? (17)
F3Uf (u)] = [cosa u—sina (i2m) 1d/du"fa(u)  (18) / / Wi (u ) dudp= || f||* = Signal Energy  (24)

Whena = 1 the transform of a coordinate multiplied function Here®, denotes the integral projection (or Radon transform) op-
uf(u) is the derivative of the transform of the original function  erator which takes an integral projection of the two-dimensional
f(u), a well-known property of the Fourier transform. For other functionWs (u, 1) onto an axis making angtewith theu axis, to
values ofg, the transform otif(u) is a linear combination of the produce a one-dimensional function.

coordinate-multiplied transform of the original function and the Now, it is possible to show that the Wigner distribution
derivative of the transform of the original function. The coeffi- W, (u, ) of fa(u) is a clockwise rotated version of the Wigner
cients in the linear combination aceso and—sina. distributionW; (u, ) of f(u). Mathematically,

Transform of the derivative of a function:
Wi, (U, ) = Wi (ucosa — psina, usind + Hcosa ). (25)

F2P" = [sina U+ cosa D|"F? (19)
Fa[[(i2r0~1d/du"f (u)] = That is, the act of fractional Fourier transformation on the origi-
i o N nal function, corresponds to rotation of the Wigner distribution.
[sinaru+cosa (i2m)~"d/du*fa(u)  (20) An immediate corollary of this result, supported by figure 2, is
When a = 1 the transform of the derivative of a function Ra[Wi (U, )] = |fa(u)|?, (26)

df(u)/duis the coordinate-multiplied transform of the original
function. For other values &, the transform is again a linear

combination of the coordinate-multiplied transform of the orig-
inal function and the derivative of the transform of the original
function.

It is also possible to write convolution and multiplication
properties for the fractional Fourier transform, though these are
not of great simplicity [1].

The transform is continuous in the ordarso that small
changes in the ordexcorrespond to small changes in the trans-
form f,(u). Nevertheless, care is always required in dealing with
cases whera approaches an even integer, since in this case the
kernel approaches a delta function.

which is a generalization of equations 22 and 23. This equation
means that the projection of the Wigner distributiorf ¢fi) onto

the axis making angle gives us f,(u)|?, the squared magnitude

of theath fractional Fourier transform of the function. Since pro-
jection onto theu axis (the time or space domain) gividgu)|?

and projection onto thg = u; axis (the frequency domain) gives
|F(W)|?, itis natural to refer to the axis making angies theath
order fractional Fourier domain.

It has been shown that the rotation property generalizes to
certain other representations belonging to the so-called Cohen
class. Thus the FrFT corresponds to rotation of many time-
frequency representations. This supports the notion of referring
to the axis making an angte = art/2 with the u axis as theth
order fractional Fourier domain. This concept generalizes the
concept of the Fourier (or frequency) domain which is impor-
tant in Fourier analysis. The “frequency domain” is understood
to be a space where the Fourier transform representation of the
signal lives, with its own interpretation and qualities. Similarly
time or space domain is the space where the original function is
represented. Oblique axes making angleonstitute domains

, i o iz where theath order fractional Fourier transform lives. Notice
Wi (U, ) = / flu+u/2)t (u-u/2)e du. (21 that this description is consistent with the fact that the second

Fractional Fourier domains

An important property of the FrFT is th&gctional Fourier
transformation corresponds to rotation in phase space for-
mulate this we consider a time/space-frequency representation
of the functionf(u), such as the Wigner distributioi: (u, p),
which is defined as
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@ H Applications
The fractional Fourier transform has received a great deal of
/ interest in the area of optics and especially optical signal process-
W (Uh) e — ing (also known as Fourier optics or information optics) [10-13].
R A Optical signal processing is an analog signal processing method
U which relies on the representation of signals by light fields and
S their manipulation with optical elements such as lenses, prisms,
transparencies, holograms and so forth. Its key component is the
optical Fourier transformer which can be realized using one or
two lenses separated by certain distances from the input and out-
put planes. It has been shown that fractional Fourier transform
can be optically implemented with equal ease as the ordinary
Fourier transform, allowing a generalization of conventional ap-
proaches and results to their more flexible or general fractional
analogs. The fractional Fourier transform has also been shown to
be intimately related to wave and beam propagation and diffrac-
(b) u tion.

The transform has also found widespread use in signal and
¢ image processing, in areas ranging from time/space-variant filter-
Wg(” H) < b : ing, perspective projections, phase retrieval, image restoration,
PN : pattern recognition, tomography, data compression, encryption,
u watermarking, and so forth (for instance, [14-18, 29, 31]). Con-
cepts such as “fractional convolution” and “fractional correla-
tion” have been studied.

The fractional Fourier transform is intimately related to the
harmonic oscillator in both its classical and quantum-mechanical
forms. The kerneKy(u,u’) given in equation 1 is precisely
the Green’s function (time-evolution operator kernel) of the

i guantum-mechanical harmonic oscillator differential equation.
Figure 2. In other words, the time evolution of the wave function of a
harmonic oscillator corresponds to continual fractional Fourier
transformation. Thus one can expect the fractional Fourier trans-
form to play an important role in the study of vibrating systems,

Fourier transform is equal to the parity operation (associated with P i } )
the —u axis), the fact that the- 1st transform corresponds to the &0 application area which has so far not received much attention.

inverse Fourier transform (associated with thg axis), and the Another potential application area is the solution of time-
periodicity of f4(u) in a (adding a multiple of to a corresponds varying differential equations. Namias and McBride and Kerr

to adding a multiple oPrtto a). These concepts are best under- [3, 5] have shown how the fractional Fourier transform can be
stood by referring to figure 3. used to solve certain differential equations. Constant coeffi-

cient (time-invariant) equations can be solved with the ordinary

Fourier or Laplace transforms. It has been shown that certain

kinds of second-order differential equations with non-constant
H coefficients can be solved by exploiting the additional degree of
freedom associated with the order paramater

We believe that the fractional Fourier transform is of po-

tential usefulness in every area in which the ordinary Fourier
transform is used. The typical pattern of discovery of a new
application is to concentrate on an application where the ordi-
nary Fourier transform is used and ask if any improvement or
generalization might be possible by using the fractional Fourier
transform instead. The additional order parameter often allows
better performance or greater generality because it provides an
Figure 3. additional degree of freedom over which to optimize.

a=arm/2
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Typically, improvements are observed or are greater when In multi-stage and multi-channel filtering configurations,
dealing with time/space-variant signals or systems. Furthermore, there are two categories of unknowns, the fractional Fourier
very large degrees of improvement often becomes possible whentransform orders and the filter coefficients. The problem of find-
signals of a chirped nature or with nearly-linearly increasing fre- ing the optimal filter coefficients, given the transform orders has
quencies are in question, since chirp signals are the basis func-been solved in [19, 30, 31] using a minimum mean square error
tions associated with the fractional Fourier transform (just as har- approach. On the other hand, the problem of optimizing multiple
monic functions are the basis functions associated with the ordi- orders has not yet been addressed, and in most cases the orders
nary Fourier transform). have been chosen uniformly. Here, we have also attempted to op-

In the next two sections we will concentrate on two specific timize over the orders for multi-channel filtering by first finding
applications of the transform. A review of other applications may the optimal filter coefficients for a larger number of uniformly
be found in [1]. chosen orders and then maintaining the most important ones.

For image compression we interpret the matrixot as rep-
resenting a linear system, but as representing a two-dimensional
signal or image. Thus the filtering coefficients in the multi-stage
or multi-channel approximation of this matrix, can be used to ap-
proximately represent and reconstruct this matrix and the associ-
ated image. In other words, the optimal filtering coefficients min-
imizing the mean square error between the original matrix and
its multi-stage and multi-channel approximation, are taken as the
compressed version of the image. Reconstruction of compressed
images is possible iI®(MNIlogN) time. In the references cited
in the preceding paragraph, which deal with multi-stage and

multi-channel filtering sytems, it is shown that satisfactory
approximations are possible with a moderate humbers of filters.
Therefore, it seems worth investigating whether similar approxi-
mations with similar reductions in cost (measured by the com-
pression ratio) is possible when these configurations are used
for image compression. Since the original image Napixels
and the compressed data IN¥gl pixels, the compression ratio is
N/M.

In the multi-channel case it is possible to analytically find
the optimal filter coefficients, provided the transform orders have
been chosen. In practice, however, an iterative method is pre-
ferred. In the multi-stage case it is not possible to find analytic
Trnulti—stage= [F~ Vi, ... F?2 %m, F3] 27) solutions, so an iterative method must be used to begin with. The
criterion of optimality in approximating with T muiti —channel OF
T multi —stageiS Minimum mean square distance.

In the multi-channel filtering case, we have also considered
the improvement of optimizing over the orders by first finding the
optimal filter coefficients for a larger number of uniformly cho-
sen orders and then maintaining the most important ones. More
specifically, we start with several times the number of ordiérs
we are eventually going to use. Then, tleorders resulting in
filters with the highest energy are chosen, and the other branches
of the multi-channel configuration are eliminated. Finally, with
the orders thus chosen, we re-optimize the filter coefficients as
M before.

T multi—channel= [Z FaklkFa"] (28) The compression method proposed is tested onlf&x
k=1 128image shown in Figure 4(a). Figure 4(b) shows the trade-
off between the reconstruction error and compression ratio. The
where T muiti—channel IS @ mMatrix representing the overall multi-  mean square error has been normalized by the energy of the orig-
channel filtering configuration. inal image. The horizontal axis of the plot is the inverse of this

Application to Image Representation and Compres-
sion

In this section we discuss a novel way of representing im-
ages based on fractional Fourier domain filtering configurations
[2,19], leading to a method for compressing images.

Space- and frequency-domain filtering are special cases of
fractional Fourier domain filtering [29, 31]. Fractional Fourier
domain filtering consists of (i) taking the fractional Fourier trans-
form of the input signal, (ii) multiplication with a filter function,
and (iii) taking the inverse fractional Fourier transform of the re-
sult. The fractional version of the optimal Wiener filtering prob-
lem has been studied in detail in [31]. Fractional Fourier domain
filtering has been further generalized to multi-stage and multi-
channel filtering. In multi-stage filtering [19, 30] the input is first
transformed into theyyth domain, where it is multiplied by a
filter hy. The result is then transformed back into the original do-
main. This process is repeatbtitimes. Denoting the diagonal
matrix corresponding to multiplication by théh filter bymy, we
can write the following expression for the overall effect of the
multi-stage filtering configuration:

where Tmuiti—stage IS @ matrix representing the overall multi-
stage filtering configuration an@® denotes the discrete frac-
tional Fourier transform matrix [33]. Multi-channel filtering cir-
cuits [17, 19] consist oM single-stage blocks in parallel. For
each channd, the input is transformed to ttegth domain, mul-
tiplied by a filterhy and then transformed back. Now we can
write the following expression for the overall effect of the multi-
channel filtering configuration:
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normalized error. We see that the multi-channel and multi-stage the basic method in its rawest and barest form; we merely repre-
configurations give comparable results, though the multi-stage sent the image with the filter coefficients which make the forms
configuration is slightly better. Optimizing over the orders for given in (27) and (28) as close as possible to the image matrix.
the multi-channel case results in tangible improvements. Further refinement and development of the method and its com-

Figure 4(c-f) show illustrative results obtained with the bination and joint use with other techniques may lead to full-
multi-stage configuration. Although the order-optimized multi- fledged compression algorithms with better performance. (One
channel case yields smaller errors, we present results for theway of generalizing the method, which can lead to potentially
multi-stage configuration so as to illustrate the performance of higher compression ratios with similar errors is to employ fil-
the method in its rawest, most basic form. Whereas we observe tering circuits based on linear canonical transforms, rather than
that nearly an order of magnitude compression is possible with fractional Fourier transforms.)

moderate errors, larger compression ratios are accompanied by  Moreover, regardless of the performance that can ultimately
larger errors. be obtained with improvements of the present idea, the fact that
the information inherent in an image can be decomposed or fac-

tored into fractional Fourier domains in the manner described, is
@ Compression ratio 0) of considerable conceptual significance. In a sense, these do-

10% mains “span” a certain space which is a subset of the image

space, although the precise nature of this is difficult to ascertain
in the nonlinear multi-stage case. The information contained in

10 the image is distributed to the different domains in an unequal
way, making some domains more dispensible than others in rep-
. resenting the image. Exploring and exploiting these issues seem
101 0 o ) potentially rewarding.
Inverse normzﬁized error
© (d)

Application to Beam-forming

This section is devoted to discussing a beamforming method
using the fractional Fourier transform [20]. Beamforming is a
widely used tool in sensor array signal processing for various
goals such as: signal enhancement, interference suppression, and
direction of arrival (DOA) estimation. Essentially, beamforming
© 0 ?s a filtgring of signals arriving at distributed Sensors. The _filter—
ing weights at the sensors are chosen to achieve a certain goal.
Spatial filtering is useful in many applications since the signals
of interest and the interference are spatially separated. Gener-
ally, a beamformer also includes temporal filtering along with the
spatial filtering to exploit spectral differences. It uses a weighted
sum of the sensor outputs at certain time instants. In other words,
beamforming is a linear combination of the temporal outputs of
Figure 4. (a) Original image. (b) Compression ratio versus inverse nor- the multiple sensors. Mathematically, we can express a general
malized error: multi-channel (dashed line), multi-stage (solid line), multi- beamformer operation as:
channel with optimized orders (bold line). Reconstructed images with

compression ratio 32 (c), 21.3 (d), 8 (e), 5.3 (f).
J K-1

y(t) = Zl Zowipm (t—pT), (29)
i=1p=

Unfortunately, we observe that the use of fractional Fourier
domain filtering configurations for image compression, does not
yield results as good as those obtained when they are used forwherey(t) is the beamformer outpuwy p’'s are the weights of
synthesis and fast implementation of shift-variant linear systems. the beamformerx;(t)’s are the signals arriving at the sensors,
In its present form, the proposed idea does not yield better resultsK — 1 is the number of delays in each of the sensor chandels,
than presently available compression algorithms. However, we is the number of sensor$,is the duration of a single time delay,
emphasize that the results presented reflect the performance ofand the superscript™ denotes complex conjugate. We can write
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Mean-squared error vs. a, SNR=20, accelerating target.

= vy

i

Figure 5. Block diagram of the proposed FrFT beamformer, F denotes
the ath order FrFT.

equation (29) in vector form as follows:

()

Mean-squared error

y(t) = wx(t),

where s m 3 % % ER )

x(t) Z[Xl(t), xl(t — T), e, (30) Figure 6. Error plots for an accelerating source. Part (a) shows the MSE
for the FrFT beamformer for different values of & Part (b) compares the
. _ _ _ T
X(t=(K=DT),.... %(t),... % (t-(K 1)T)] ’ MSE for the FrFT beamformer (a = aopt), space domain beamformer
W=[W10,W11,...,WiK_1,-..,W20,...,WiKk_1], (a=0), and frequency domain beamformer (a = 1).

where the superscript " denotes transpose an#i™Hermitian The method we propose generalizes the minimum MSE
conjugate. Some beamformers deviate from this general form beamformer [25]. The goal is to minimize the MSE between the
to meet certain needs. For example, when the signal of interestbeamformer output and the desired signal. The desired signal is
is broadband, it is a good idea to perform beamforming in the determined by the problem at hand. In a moving source prob-
frequency domain (i.e. following Fourier transform) rather than |em, the desired signal is the signal emitted by the source, which
the spatial domain. we want to obtain as free-of-noise as possible. In an active radar
A basic approach to beamforming, using a reference sig- problem, it may be the signal reflected from the target. It may
nal [25], suggests to design the beamformer so that the MSE be-have different meanings in yet other beamforming applications
tween its output and a desired signal is minimized. The method not discussed here. Mathematically, the optimal weighfsare
proposed in this section can be viewed as a generalization of this given by:
method. The reader can find a more extensive treatment of beam-
forming in [26].
The motivation behind the proposed method is the ability
of the fractional Fourier transform (FrFT) to process the chirp
signals better than the ordinary Fourier transform (FT). In ar- \here yy(t)denotes the desired signaj(t) the beamformer
ray signal processing, chirp signals are encountered for exampleoutput, and|| - || denotes thelL, norm given by|ly(t)||? =
in problems where a sinusoidal source is accelerating, or active [, y(t)y*(t) dt. The optimum weights can be calculated by sub-
radar problems where chirp signals are transmitted. Accelera- stituting the beamformer output in the MSE expression (31) to be

tion of the source causes its sinusoids to arrive at the sensors asninimized. Solving these equations give the optimum weights:
chirp signals. Therefore, replacing the FT with the FrFT should

improve the performance considerably.

A sinusoid emitted from an accelerating source will arrive
at the sensors as a chirp signal, and therefore the FrFT beam-
forming can improve the beamformer performance. Indeed, our whereRy is the covariance of the measurements at the sensors,
computer simulations show that much smaller errors are obtained andr,q is the cross-covariance between the measurements at the
when the FrFT beamformer is used. sensors and the desired signal.

Wopt = MINE{|[y(t) —Ya()[?}, (31

—1
WOpt - Rx I'xd,
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The above result corresponds to the spatial filtering of the
signals arriving at the sensors. We extend this result by using
filtering in a fractional Fourier domain rather than the spatial do-

main. Figure shows the general structure of the proposed beam-

former.

that yields the smallest error. We can scan values®f—1,1]
using a spacing as close as we wish and make fine adjustment if
necessary.

The proposed method reduces to ordinary minimum MSE
beamforming in the spatial domain far= 0 and to minimum

The measurements at the sensors are transformed into theMSE beamforming in the frequency domain far= 1. In the

ath fractional Fourier domain, then beamforming is performed
in this domain, and the output is transformed back into the time
domain by using the inverse FrFT. We can summarize these op-
erations by writing the input-output relationship explicitly:

y(t) = F 3w (FA{x() 1)}, (32)

whereF?2{.} denotes thath order FrFT. Since the structure of
the beamformer is now changed we have to re-calculate the op-
timum weights. The goal is again to minimize the MSE between
the desired signal and the output of the beamformer. We substi-
tute the beamformer output (32) into the MSE (31) to be min-
imized and solve for the optimum orders. We refer the reader
to [31] for details. The optimum weights that minimize the MSE
are now given by:

—1
Wopt = R, T xad

whereR,, is the covariance of thath order FrFT’s of the sig-
nals arriving at the sensors, angq is the cross-covariance be-
tween theath order FrFT of the desired signal and the FrFT'’s
of the signals arriving at the sensors. The covariaRgeand
the cross covariancg,q should be known a priori in a moving
source problem. On the other hand, in an active radar problem,
we can calculate it since the signal transmitted is known to us,
assuming a distribution for the parameters like range, radial ve-
locity and DOA of the target.

We can comput®,, andry.q using the original covariances
as follows:

Re = Ra(t,t) =

/ / Ka(t’t//)Kfa(t/)t///)RX(t//’t///) dt// dt///’
Mxad = Mxd (8,1) =

/ / Ka(t,t”)Kia(t/7t/”)rxd(t”7t”/) dt// dt/”.

The previous discussion gives the optimum weights for
beamforming in a certain fractional Fourier domain. We still

need to answer the question of which domain should be selected.

The optimum fractional Fourier transform order cannot be found
analytically in general. Instead, we calculate the MSE we want to
minimize (see equation (31)) for differeat and select the one

9

next section we show that in many problems the optimum order
is different tharl or O, thus smaller errors can be obtained when
the generalized method we propose is used.

We demonstrate that the proposed method yields improved
results (smaller MSE) in a moving source scenario. The source
is in the far field and emits an electromagnetic sinusoid with
frequencyf = 100 kHz, so the wavelength is approximately
3 meters. We assume additive Gaussian noise and use 5 lin-
early spaced passive sensors separated by half wavelength, and
only instantaneous measurements are used, without delays. The
source signal is assumed to be stochastic with known second-
order statistics. The source accelerates f@&dm/s to 120m/s
during the measurement interval with an acceleratiofirofs?
in the same direction. Figures 6 show two figures of the MSE
(31) for each scenario, the first (a) as a function of the FrFT or-
dera, and the second (b) as a function of SNR for beamformers
in the space domaife = 0), frequency domairfa = 1) and the
proposed method for the optimum order.

Figure 6a shows that for the accelerating source the optimum
order isa = 0.8, which is different thard and1 (corresponding
to standard space and frequency domain beamformers). The im-
provements in performance can be easily observed from this plot,
especially for low SNR values.
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