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ABSTRACT
The ath order fractional Fourier transform operator is the

ath power of the ordinary Fourier transform operator. We pro-
vide a brief introduction to the fractional Fourier transform, dis-
cuss some of its more important properties, and concentrate o
its applications to image representation and compression, an
beamforming. We show that improved performance can be ob
tained by employing the fractional Fourier transform instead of
the ordinary Fourier transform in these applications.

Introduction
The ordinary Fourier transform (FT) and related techniques

are of great importance in diverse fields of science and enginee
ing. The fractional Fourier transform is a generalization of the
ordinary Fourier transform with an order (or power) parametera.
It has found many applications in signal and image processing
communications, and optics and wave propagation. The purpos
of this paper is to provide a brief introduction to the fractional
Fourier transform (FrFT) together with some of its more impor-
tant properties, and to discuss its applications in image represe
tation and beamforming. Those interested in learning more abou
the transform are referred to a recent book on the subject [1] o
the chapter-length treatment [2].

Mathematically theath order fractional Fourier transform
operator is theath power of the ordinary Fourier transform op-
erator. If we denote the ordinary Fourier transform operator by
F , then theath order fractional Fourier transform operator is
denoted byF a. The zeroth-order fractional Fourier transform
1
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operatorF 0 is equal to the identity operatorI . The first-order
fractional Fourier transform operatorF 1 is equal to the ordinary
Fourier transform operator. Thus the 0th order fractional Fourie
transform of the functionf (u) is merely the function itself, and
the 1st order transform is its ordinary Fourier transformF(µ),
whereµ denotes the frequency domain variable. Integer value
of a correspond to repeated application of the Fourier transform
andF −1 corresponds to the inverse Fourier transform operato
The a′th order transform of theath order transform is equal to
the (a′ + a)th order transform; that isF a′F a = F a′+a, a prop-
erty referred to as index additivity. The ordera may assume any
real value, however the operatorF a is periodic ina with period
4; that isF a+4 j = F a where j is any integer. This is becauseF 2

equals the parity operatorP which mapsf (u) to f (−u) andF 4

equals the identity operator. Therefore, the range ofa is usually
restricted to(−2,2] or [0,4).

The earliest papers related to this transform go back to th
1920s and 1930s; since then the transform has been reinven
several times. It has received the attention of a few mathe
maticians during the eighties [3–5]. However, interest in the
transform really grew with its reinvention/reintroduction by re-
searchers in the fields of optics and signal processing, who n
ticed its relevance for a variety of application areas [6–8, 29]
Further historical references and a comprehensive bibliograph
may be found in [1].

It is quite surprising that while fractional differentiation and
integration have received a significant amount of attention fo
a very long time, the fractional Fourier transform has received
very little attention until about ten years ago. Fractional deriva
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tives and fractional Fourier transforms are both fractional opera
tor powers and thus share certain properties. For instance, bo
the zeroth order fractional derivative and the zeroth order frac
tional Fourier transform are equal to the identity operation. Like
wise, the first order fractional Fourier transform is equal to the
ordinary Fourier transform and the first order fractional deriva-
tive is equal to the ordinary derivative. Both operations satisfy
index additivity: repeated applications correspond to a single ap
plication of order equal to the sum of the individual applications
The fractional Fourier transform is defined so as to have the sam
eigenfunctions as the ordinary Fourier transform but eigenvalue
raised to the fractional power. The same applies to fractiona
differentiation which has the same eigenfunctions as ordinar
differentiation but eigenvalues raised to the fractional power in
question.

A further intriguing point follows from a particular way of
defining fractional derivatives. Theath fractional derivative may
be defined as that operation corresponding to multiplication with
the ath power of the frequency variable in the ordinary Fourier
domain. Therefore one is led to inquire what kind of fractional
operation would be obtained if a similar definition was con-
structed in terms of the fractional Fourier transform. Such an
operation may perhaps be referred to as a “doubly fractiona
derivative and seems worthy of further investigation.

The fractional Fourier transform has been found to have sev
eral applications in the area known as optical information pro
cessing where it allows a reformulation of this area in a more
general way than that found in standard texts [1]. The trans
form also led to generalizations of the concepts of the time an
frequency domains and this resulted in many applications in th
area of signal processing [1]. In this paper two applications o
the transform in signal processing are given. First a novel wa
of representing images based on fractional Fourier domain fi
tering configurations [2, 19], leading to a method for compress
ing images, will be presented. Then the application of the frac
tional Fourier transform to a beam-forming problem will be dis-
cussed [20]. Basically beam-forming refers to filtering of sig-
nals received by distributed sensors. Acceleration of the sourc
causes sinusoidal signals to arrive at the sensors as chirp signa
The motivation behind the proposed method is the ability of the
fractional Fourier transform to process the chirp signals bette
than the ordinary Fourier transform.

Definition

The ath order fractional Fourier transform of the function
f (u) is often denoted byfa(u) and defined as an integral trans-
2
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form as follows:

fa(u) =
Z ∞

−∞
Ka(u,u′) f (u′)du′, (1)

Ka(u,u′) = Aα exp
[
iπ(cotα u2−2cscα uu′+cotα u′2)

]
,

Aα =
√

1− i cotα α =
aπ
2

whena 6= 2 j. Whena= 4 j the transform is defined asKa(u,u′) =
δ(u− u′) and whena = 4 j + 2 the transform is defined as
Ka(u,u′) = δ(u+ u′). It can be shown that the above kernel for
a 6= 2 j indeed approaches these delta function kernels asa ap-
proaches even integers.

The transform as defined above is indeed the operator pow
of the FT. In order to see this, we first consider the eigenvalu
equation of the FT:

F ψn(u) = e−inπ/2ψn(u). (2)

Hereψn(u), n= 0,1,2. . . denote the Hermite-Gaussian functions
defined asψn(u) = (21/4/

√
2nn! ) Hn(

√
2πu) exp(−πu2), where

Hn(u) are the standard Hermite polynomials.exp(−inπ/2) is
the eigenvalue associated with thenth eigenfunctionψn(u). The
fractional Fourier transform may then be defined such that it ha
the same eigenfunctions but the eigenvalues raised to theath
power:

F aψn(u) = (e−inπ/2)aψn(u). (3)

This definition is not unique for a number of reasons [1]. The
particular definition which has so far received the greatest at
tention, has the most elegant properties, and which has foun
the most applications follows from choosing[exp(−inπ/2)]a =
exp(−ianπ/2). The fractional Fourier transform of a square-
integrable functionf (u) can then be found by first expanding
it in terms of the Hermite-Gaussian functions as

f (u) =
∞

∑
n=0

Cnψn(u), (4)

Cn =
Z

ψn(u) f (u)du, (5)

and then applyingF a to both sides to obtain

F a f (u) =
∞

∑
n=0

CnF aψn(u) (6)

fa(u) =
∞

∑
n=0

Cne−ianπ/2ψn(u), (7)

fa(u) =
Z [

∞

∑
n=0

e−ianπ/2ψn(u)ψn(u′)

]
f (u′)du′ (8)
Copyright c© 2003 by ASME

l=/data/conferences/idetc/cie2003/72063/ on 06/05/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use



Dow
The final form can be shown to be equal to that given by equa
tion 1 through a standard identity.

As an example, we plot the magnitude of the fractiona
Fourier transforms of the rectangle function for different val-
ues of the ordera ∈ [0,1] in figure 1. Asa varies from0 to 1,
the rectangle function continuously evolves into a sinc function
which is the ordinary Fourier transform of the rectangle function
Such two-dimensional functionsfa(u) with variablesa andu are
known as rectangular time-order or space-order representatio
of the function f (u), depending on whether the variableu is in-
terpreted as time or space [1].
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Figure 1.

Properties
Linearity : F a[∑k bk fk(u)] = ∑k bk[F a fk(u)].
Integer orders: When a is equal to an integerk, the ath

order FrFT is equivalent to thekth integer power of FT, defined
by repeated application. It also follows thatF 2 = P (the parity
operator),F 3 = F −1 = (F )−1 (the inverse transform operator),
F 4 = F 0 = I (the identity operator), andF j = F j mod 4.

Inverse: (F a)−1 = F −a. In terms of the kernel, this prop-
erty is stated asK−1

a (u,u′) = K−a(u,u′).
Unitarity : (F a)−1 = (F a)H = F −a where()H denotes the

conjugate transpose of the operator. In terms of the kernel, th
property can stated asK−1

a (u,u′) = K∗
a(u′,u).

Index additivity : F a2F a1 = F a2+a1. In terms of kernels
this can be written asKa2+a1(u,u′) =

R
Ka2(u,u′′)Ka1(u

′′,u′)du′′.
Commutativity : F a2F a1 = F a1F a2.
Associativity: F a3(F a2F a1) = (F a3F a2)F a1.
Eigenfunctions: F a[ψn(u)] = exp(−ianπ/2)ψn(u).
3
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Parseval:
R

f ∗(u)g(u)du=
R

f ∗a (u)ga(u)du. This property
is equivalent to unitarity. Energy or norm conservation (En[ f ] =
En[ fa] or ‖ f‖= ‖ fa‖) is a special case.

Time reversal: Let P denote the parity operator:P [ f (u)] =
f (−u), then

F aP = P F a (9)

F a[ f (−u)] = fa(−u) (10)

Transform of a scaled function: Let MM and Qq denote
the scalingMM[ f (u)] = |M|−1/2 f (u/M) and chirp multiplication
Qq[ f (u)] = e−iπqu2

f (u) operators respectively. Then

F a MM =

Q[−cotα(1−(cos2 α′)/(cos2 α))] M[M sinα′/sinα] F a′ , (11)

F a[|M|−1/2 f (u/M)] =

Cα eiπu2 cotα(1−(cos2 α′)/(cos2 α)) fa′

(
Musinα′

sinα

)
. (12)

Hereα′ = arctan(M−2 tanα) andα′ is taken to be in the same
quadrant asα, Cα =

√
(1− i cotα)/(1− iM2cotα). This prop-

erty is the generalization of the scaling property of the FT stating
that the FT of f (u/M) is |M|F(Mµ). Notice that the FrFT of
f (u/M) cannot be expressed as a scaled version offa(u) for the
same ordera.

Transform of a shifted function: Let SH u0 and P H µ0

denote the shiftSH u0[ f (u)] = f (u− u0) and the phase shift
P H µ0[ f (u)] = exp(i2πµ0u) f (u) operators respectively. Then

F a SH u0 = eiπu2
0 sinαcosαP H −u0 sinα SH u0 cosα, (13)

F a[ f (u−u0)] = eiπu2
0 sinαcosαe−i2πuu0 sinα fa(u−u0cosα).

(14)

We see that theSH u0 operator, which simply results in a transla-
tion in theu domain, corresponds to a translation followed by a
phase shift in theath fractional domain. The amount of transla-
tion and phase shift is given by cosine and sine multipliers which
can be interpreted in terms of “projections” between the axes.

Transform of a phase-shifted function:

F a P H µ0 = e−iπµ2
0 sinαcosαP H µ0 cosα SH µ0 sinα (15)

F a[ f (u−u0)] = e−iπµ2
0 sinαcosαei2πuµ0 cosα fa(u−µ0sinα) (16)

Similar to the shift operator, the phase-shift operator which sim-
ply results in a phase shift in theu domain, corresponds to a
Copyright c© 2003 by ASME
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translation followed by a phase shift in theath fractional domain.
Again the amount of translation and phase shift are given by co
sine and sine multipliers.

Transform of a coordinate multiplied function : Let U
and D denote the coordinate multiplicationU[ f (u)] = u f(u)
and differentiationD[ f (u)] = (i2π)−1d f(u)/du operators re-
spectively. Then

F a Un = [cosα U−sinα D]nF a (17)

F a[un f (u)] = [cosα u−sinα (i2π)−1d/du]n fa(u) (18)

When a = 1 the transform of a coordinate multiplied function
u f(u) is the derivative of the transform of the original function
f (u), a well-known property of the Fourier transform. For other
values ofa, the transform ofu f(u) is a linear combination of the
coordinate-multiplied transform of the original function and the
derivative of the transform of the original function. The coeffi-
cients in the linear combination arecosα and−sinα.

Transform of the derivative of a function:

F a Dn = [sinα U +cosα D]nF a (19)

F a[[(i2π)−1d/du]n f (u)] =

[sinα u+cosα (i2π)−1d/du]n fa(u) (20)

When a = 1 the transform of the derivative of a function
d f(u)/du is the coordinate-multiplied transform of the original
function. For other values ofa, the transform is again a linear
combination of the coordinate-multiplied transform of the orig-
inal function and the derivative of the transform of the original
function.

It is also possible to write convolution and multiplication
properties for the fractional Fourier transform, though these ar
not of great simplicity [1].

The transform is continuous in the ordera so that small
changes in the ordera correspond to small changes in the trans-
form fa(u). Nevertheless, care is always required in dealing with
cases wherea approaches an even integer, since in this case th
kernel approaches a delta function.

Fractional Fourier domains
An important property of the FrFT is thatfractional Fourier

transformation corresponds to rotation in phase space. To for-
mulate this we consider a time/space-frequency representatio
of the function f (u), such as the Wigner distributionWf (u,µ),
which is defined as

Wf (u,µ) =
Z

f (u+u′/2) f ∗(u−u′/2)e−i2πµu′ du′. (21)
4
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The many properties of the Wigner distribution [9] support its
interpretation as a function giving the distribution of signal en-
ergy in the time/space-frequency plane. Three of the importan
properties of the Wigner distribution areZ

Wf (u,µ)dµ= R0[Wf (u,µ)] = | f (u)|2, (22)Z
Wf (u,µ)du= Rπ/2[Wf (u,µ)] = |F(µ)|2, (23)Z Z
Wf (u,µ)dudµ= ‖ f‖2 = Signal Energy. (24)

HereRα denotes the integral projection (or Radon transform) op
erator which takes an integral projection of the two-dimensiona
functionWf (u,µ) onto an axis making angleα with theu axis, to
produce a one-dimensional function.

Now, it is possible to show that the Wigner distribution
Wfa(u,µ) of fa(u) is a clockwise rotated version of the Wigner
distributionWf (u,µ) of f (u). Mathematically,

Wfa(u,µ) = Wf (ucosα−µsinα,usinα+µcosα). (25)

That is, the act of fractional Fourier transformation on the origi-
nal function, corresponds to rotation of the Wigner distribution.
An immediate corollary of this result, supported by figure 2, is

Rα[Wf (u,µ)] = | fa(u)|2, (26)

which is a generalization of equations 22 and 23. This equatio
means that the projection of the Wigner distribution off (u) onto
the axis making angleα gives us| fa(u)|2, the squared magnitude
of theath fractional Fourier transform of the function. Since pro-
jection onto theu axis (the time or space domain) gives| f (u)|2
and projection onto theµ= u1 axis (the frequency domain) gives
|F(µ)|2, it is natural to refer to the axis making angleα as theath
order fractional Fourier domain.

It has been shown that the rotation property generalizes t
certain other representations belonging to the so-called Cohe
class. Thus the FrFT corresponds to rotation of many time
frequency representations. This supports the notion of referrin
to the axis making an angleα = aπ/2 with theu axis as theath
order fractional Fourier domain. This concept generalizes th
concept of the Fourier (or frequency) domain which is impor-
tant in Fourier analysis. The “frequency domain” is understood
to be a space where the Fourier transform representation of th
signal lives, with its own interpretation and qualities. Similarly
time or space domain is the space where the original function i
represented. Oblique axes making angleα constitute domains
where theath order fractional Fourier transform lives. Notice
that this description is consistent with the fact that the secon
Copyright c© 2003 by ASME
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Fourier transform is equal to the parity operation (associated w
the−u axis), the fact that the−1st transform corresponds to the
inverse Fourier transform (associated with the−µ axis), and the
periodicity of fa(u) in a (adding a multiple of4 to a corresponds
to adding a multiple of2π to α). These concepts are best unde
stood by referring to figure 3.

a

u

µ

α =     π / 2

Figure 3.
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Applications
The fractional Fourier transform has received a great deal of

interest in the area of optics and especially optical signal process-
ing (also known as Fourier optics or information optics) [10–13].
Optical signal processing is an analog signal processing method
which relies on the representation of signals by light fields and
their manipulation with optical elements such as lenses, prisms,
transparencies, holograms and so forth. Its key component is the
optical Fourier transformer which can be realized using one or
two lenses separated by certain distances from the input and out-
put planes. It has been shown that fractional Fourier transform
can be optically implemented with equal ease as the ordinary
Fourier transform, allowing a generalization of conventional ap-
proaches and results to their more flexible or general fractional
analogs. The fractional Fourier transform has also been shown to
be intimately related to wave and beam propagation and diffrac-
tion.

The transform has also found widespread use in signal and
image processing, in areas ranging from time/space-variant filter-
ing, perspective projections, phase retrieval, image restoration,
pattern recognition, tomography, data compression, encryption,
watermarking, and so forth (for instance, [14–18, 29, 31]). Con-
cepts such as “fractional convolution” and “fractional correla-
tion” have been studied.

The fractional Fourier transform is intimately related to the
harmonic oscillator in both its classical and quantum-mechanical
forms. The kernelKa(u,u′) given in equation 1 is precisely
the Green’s function (time-evolution operator kernel) of the
quantum-mechanical harmonic oscillator differential equation.
In other words, the time evolution of the wave function of a
harmonic oscillator corresponds to continual fractional Fourier
transformation. Thus one can expect the fractional Fourier trans-
form to play an important role in the study of vibrating systems,
an application area which has so far not received much attention.

Another potential application area is the solution of time-
varying differential equations. Namias and McBride and Kerr
[3, 5] have shown how the fractional Fourier transform can be
used to solve certain differential equations. Constant coeffi-
cient (time-invariant) equations can be solved with the ordinary
Fourier or Laplace transforms. It has been shown that certain
kinds of second-order differential equations with non-constant
coefficients can be solved by exploiting the additional degree of
freedom associated with the order parametera.

We believe that the fractional Fourier transform is of po-
tential usefulness in every area in which the ordinary Fourier
transform is used. The typical pattern of discovery of a new
application is to concentrate on an application where the ordi-
nary Fourier transform is used and ask if any improvement or
generalization might be possible by using the fractional Fourier
transform instead. The additional order parameter often allows
better performance or greater generality because it provides an
additional degree of freedom over which to optimize.
Copyright c© 2003 by ASME
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Typically, improvements are observed or are greater whe
dealing with time/space-variant signals or systems. Furthermor
very large degrees of improvement often becomes possible whe
signals of a chirped nature or with nearly-linearly increasing fre
quencies are in question, since chirp signals are the basis fun
tions associated with the fractional Fourier transform (just as ha
monic functions are the basis functions associated with the ord
nary Fourier transform).

In the next two sections we will concentrate on two specific
applications of the transform. A review of other applications may
be found in [1].

Application to Image Representation and Compres-
sion

In this section we discuss a novel way of representing im
ages based on fractional Fourier domain filtering configuration
[2,19], leading to a method for compressing images.

Space- and frequency-domain filtering are special cases
fractional Fourier domain filtering [29, 31]. Fractional Fourier
domain filtering consists of (i) taking the fractional Fourier trans-
form of the input signal, (ii) multiplication with a filter function,
and (iii) taking the inverse fractional Fourier transform of the re-
sult. The fractional version of the optimal Wiener filtering prob-
lem has been studied in detail in [31]. Fractional Fourier domain
filtering has been further generalized to multi-stage and multi
channel filtering. In multi-stage filtering [19,30] the input is first
transformed into thea1th domain, where it is multiplied by a
filter h1. The result is then transformed back into the original do-
main. This process is repeatedM times. Denoting the diagonal
matrix corresponding to multiplication by thekth filter by k, we
can write the following expression for the overall effect of the
multi-stage filtering configuration:

Tmulti−stage=
[
F−aM

hM . . .Fa2−a1
h1Fa1

]
, (27)

where Tmulti−stage is a matrix representing the overall multi-
stage filtering configuration andFak denotes the discrete frac-
tional Fourier transform matrix [33]. Multi-channel filtering cir-
cuits [17, 19] consist ofM single-stage blocks in parallel. For
each channelk, the input is transformed to theakth domain, mul-
tiplied by a filter hk and then transformed back. Now we can
write the following expression for the overall effect of the multi-
channel filtering configuration:

Tmulti−channel=

[
M

∑
k=1

F−ak
kFak

]
(28)

whereTmulti−channel is a matrix representing the overall multi-
channel filtering configuration.
6
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In multi-stage and multi-channel filtering configurations,
there are two categories of unknowns, the fractional Fourie
transform orders and the filter coefficients. The problem of find
ing the optimal filter coefficients, given the transform orders ha
been solved in [19, 30, 31] using a minimum mean square erro
approach. On the other hand, the problem of optimizing multiple
orders has not yet been addressed, and in most cases the ord
have been chosen uniformly. Here, we have also attempted to o
timize over the orders for multi-channel filtering by first finding
the optimal filter coefficients for a larger number of uniformly
chosen orders and then maintaining the most important ones.

For image compression we interpret the matrixT not as rep-
resenting a linear system, but as representing a two-dimension
signal or image. Thus the filtering coefficients in the multi-stage
or multi-channel approximation of this matrix, can be used to ap
proximately represent and reconstruct this matrix and the assoc
ated image. In other words, the optimal filtering coefficients min
imizing the mean square error between the original matrix an
its multi-stage and multi-channel approximation, are taken as th
compressed version of the image. Reconstruction of compress
images is possible inO(MN logN) time. In the references cited
in the preceding paragraph, which deal with multi-stage and

multi-channel filtering sytems, it is shown that satisfactory
approximations are possible with a moderate numbers of filter
Therefore, it seems worth investigating whether similar approxi
mations with similar reductions in cost (measured by the com
pression ratio) is possible when these configurations are us
for image compression. Since the original image hasN2 pixels
and the compressed data hasNM pixels, the compression ratio is
N/M.

In the multi-channel case it is possible to analytically find
the optimal filter coefficients, provided the transform orders hav
been chosen. In practice, however, an iterative method is pr
ferred. In the multi-stage case it is not possible to find analytic
solutions, so an iterative method must be used to begin with. Th
criterion of optimality in approximatingT with Tmulti−channel or
Tmulti−stage is minimum mean square distance.

In the multi-channel filtering case, we have also considere
the improvement of optimizing over the orders by first finding the
optimal filter coefficients for a larger number of uniformly cho-
sen orders and then maintaining the most important ones. Mo
specifically, we start with several times the number of ordersM
we are eventually going to use. Then, theM orders resulting in
filters with the highest energy are chosen, and the other branch
of the multi-channel configuration are eliminated. Finally, with
the orders thus chosen, we re-optimize the filter coefficients a
before.

The compression method proposed is tested on the128×
128 image shown in Figure 4(a). Figure 4(b) shows the trade
off between the reconstruction error and compression ratio. Th
mean square error has been normalized by the energy of the or
inal image. The horizontal axis of the plot is the inverse of this
Copyright c© 2003 by ASME
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normalized error. We see that the multi-channel and multi-sta
configurations give comparable results, though the multi-sta
configuration is slightly better. Optimizing over the orders fo
the multi-channel case results in tangible improvements.

Figure 4(c-f) show illustrative results obtained with the
multi-stage configuration. Although the order-optimized multi
channel case yields smaller errors, we present results for t
multi-stage configuration so as to illustrate the performance
the method in its rawest, most basic form. Whereas we obser
that nearly an order of magnitude compression is possible w
moderate errors, larger compression ratios are accompanied
larger errors.

(a)

(c) (d)

(e) (f)

10
0

10
1

10
2

10
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10
1

10
2

(b)Compression  ratio 

Inverse  normalized  error

Figure 4. (a) Original image. (b) Compression ratio versus inverse nor-

malized error: multi-channel (dashed line), multi-stage (solid line), multi-

channel with optimized orders (bold line). Reconstructed images with

compression ratio 32 (c), 21.3 (d), 8 (e), 5.3 (f).

Unfortunately, we observe that the use of fractional Fourie
domain filtering configurations for image compression, does n
yield results as good as those obtained when they are used
synthesis and fast implementation of shift-variant linear system
In its present form, the proposed idea does not yield better resu
than presently available compression algorithms. However, w
emphasize that the results presented reflect the performance
7
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the basic method in its rawest and barest form; we merely repre
sent the image with the filter coefficients which make the forms
given in (27) and (28) as close as possible to the image matrix
Further refinement and development of the method and its com
bination and joint use with other techniques may lead to full-
fledged compression algorithms with better performance. (One
way of generalizing the method, which can lead to potentially
higher compression ratios with similar errors is to employ fil-
tering circuits based on linear canonical transforms, rather than
fractional Fourier transforms.)

Moreover, regardless of the performance that can ultimately
be obtained with improvements of the present idea, the fact tha
the information inherent in an image can be decomposed or fac
tored into fractional Fourier domains in the manner described, is
of considerable conceptual significance. In a sense, these do
mains “span” a certain space which is a subset of the image
space, although the precise nature of this is difficult to ascertain
in the nonlinear multi-stage case. The information contained in
the image is distributed to the different domains in an unequa
way, making some domains more dispensible than others in rep
resenting the image. Exploring and exploiting these issues seem
potentially rewarding.

Application to Beam-forming
This section is devoted to discussing a beamforming method

using the fractional Fourier transform [20]. Beamforming is a
widely used tool in sensor array signal processing for various
goals such as: signal enhancement, interference suppression, a
direction of arrival (DOA) estimation. Essentially, beamforming
is a filtering of signals arriving at distributed sensors. The filter-
ing weights at the sensors are chosen to achieve a certain goa
Spatial filtering is useful in many applications since the signals
of interest and the interference are spatially separated. Gene
ally, a beamformer also includes temporal filtering along with the
spatial filtering to exploit spectral differences. It uses a weighted
sum of the sensor outputs at certain time instants. In other words
beamforming is a linear combination of the temporal outputs of
the multiple sensors. Mathematically, we can express a genera
beamformer operation as:

y(t) =
J

∑
i=1

K−1

∑
p=0

w∗i,pxi(t− pT), (29)

wherey(t) is the beamformer output,wi,p’s are the weights of
the beamformer,xi(t)’s are the signals arriving at the sensors,
K−1 is the number of delays in each of the sensor channels,J
is the number of sensors,T is the duration of a single time delay,
and the superscript “∗” denotes complex conjugate. We can write
Copyright c© 2003 by ASME
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Figure 5. Block diagram of the proposed FrFT beamformer, Fa denotes

the ath order FrFT.

equation (29) in vector form as follows:

y(t) = wHx(t),

where

x(t) =[x1(t), x1(t−T), . . . , (30)

x1(t− (K−1)T), . . . ,x2(t), . . . ,xJ(t− (K−1)T)]T,

w =[w1,0, w1,1, . . . ,w1,K−1, . . . ,w2,0, . . . ,wJ,K−1]H,

where the superscript “T” denotes transpose and “H” Hermitian
conjugate. Some beamformers deviate from this general fo
to meet certain needs. For example, when the signal of inter
is broadband, it is a good idea to perform beamforming in th
frequency domain (i.e. following Fourier transform) rather tha
the spatial domain.

A basic approach to beamforming, using a reference s
nal [25], suggests to design the beamformer so that the MSE
tween its output and a desired signal is minimized. The meth
proposed in this section can be viewed as a generalization of t
method. The reader can find a more extensive treatment of bea
forming in [26].

The motivation behind the proposed method is the abili
of the fractional Fourier transform (FrFT) to process the chir
signals better than the ordinary Fourier transform (FT). In a
ray signal processing, chirp signals are encountered for exam
in problems where a sinusoidal source is accelerating, or act
radar problems where chirp signals are transmitted. Accele
tion of the source causes its sinusoids to arrive at the sensor
chirp signals. Therefore, replacing the FT with the FrFT shou
improve the performance considerably.

A sinusoid emitted from an accelerating source will arriv
at the sensors as a chirp signal, and therefore the FrFT bea
forming can improve the beamformer performance. Indeed, o
computer simulations show that much smaller errors are obtain
when the FrFT beamformer is used.
8
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Figure 6. Error plots for an accelerating source. Part (a) shows the MSE

for the FrFT beamformer for different values of a. Part (b) compares the

MSE for the FrFT beamformer (a = aopt), space domain beamformer

(a = 0), and frequency domain beamformer (a = 1).

The method we propose generalizes the minimum MSE
beamformer [25]. The goal is to minimize the MSE between the
beamformer output and the desired signal. The desired signal
determined by the problem at hand. In a moving source prob
lem, the desired signal is the signal emitted by the source, whic
we want to obtain as free-of-noise as possible. In an active rada
problem, it may be the signal reflected from the target. It may
have different meanings in yet other beamforming application
not discussed here. Mathematically, the optimal weightswopt are
given by:

wopt = min
w

E{||y(t)−yd(t)||2}, (31)

where yd(t)denotes the desired signal,y(t) the beamformer
output, and|| · || denotes theL2 norm given by ||y(t)||2 =R ∞
−∞ y(t)y∗(t)dt. The optimum weights can be calculated by sub-

stituting the beamformer output in the MSE expression (31) to b
minimized. Solving these equations give the optimum weights:

wopt = R−1
x rxd,

whereRx is the covariance of the measurements at the sensor
andrxd is the cross-covariance between the measurements at t
sensors and the desired signal.
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The above result corresponds to the spatial filtering of the
signals arriving at the sensors. We extend this result by usin
filtering in a fractional Fourier domain rather than the spatial do
main. Figure shows the general structure of the proposed beam
former.

The measurements at the sensors are transformed into t
ath fractional Fourier domain, then beamforming is performed
in this domain, and the output is transformed back into the tim
domain by using the inverse FrFT. We can summarize these o
erations by writing the input-output relationship explicitly:

y(t) = F−a{wH(Fa{x(t)})}, (32)

whereFa{.} denotes theath order FrFT. Since the structure of
the beamformer is now changed we have to re-calculate the o
timum weights. The goal is again to minimize the MSE between
the desired signal and the output of the beamformer. We subs
tute the beamformer output (32) into the MSE (31) to be min-
imized and solve for the optimum orders. We refer the reade
to [31] for details. The optimum weights that minimize the MSE
are now given by:

wopt = R−1
xa

rxad,

whereRxa is the covariance of theath order FrFT’s of the sig-
nals arriving at the sensors, andrxad is the cross-covariance be-
tween theath order FrFT of the desired signal and the FrFT’s
of the signals arriving at the sensors. The covarianceRxa and
the cross covariancerxad should be known a priori in a moving
source problem. On the other hand, in an active radar problem
we can calculate it since the signal transmitted is known to us
assuming a distribution for the parameters like range, radial ve
locity and DOA of the target.

We can computeRxa andrxad using the original covariances
as follows:

Rxa = Rxa(t, t
′) =Z ∞

−∞

Z ∞

−∞
Ka(t, t ′′)K−a(t ′, t ′′′)Rx(t ′′, t ′′′)dt′′dt′′′,

rxad = rxad(t, t ′) =Z ∞

−∞

Z ∞

−∞
Ka(t, t ′′)K−a(t ′, t ′′′)rxd(t ′′, t ′′′)dt′′dt′′′.

The previous discussion gives the optimum weights for
beamforming in a certain fractional Fourier domain. We still
need to answer the question of which domain should be selecte
The optimum fractional Fourier transform order cannot be found
analytically in general. Instead, we calculate the MSE we want t
minimize (see equation (31)) for differenta’s and select the one
9
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that yields the smallest error. We can scan values ofa∈ [−1,1]
using a spacing as close as we wish and make fine adjustment
necessary.

The proposed method reduces to ordinary minimum MSE
beamforming in the spatial domain fora = 0 and to minimum
MSE beamforming in the frequency domain fora = 1. In the
next section we show that in many problems the optimum order
is different than1 or 0, thus smaller errors can be obtained when
the generalized method we propose is used.

We demonstrate that the proposed method yields improved
results (smaller MSE) in a moving source scenario. The source
is in the far field and emits an electromagnetic sinusoid with
frequency f = 100 kHz, so the wavelengthλ is approximately
3 meters. We assume additive Gaussian noise and use 5 lin
early spaced passive sensors separated by half wavelength, a
only instantaneous measurements are used, without delays. Th
source signal is assumed to be stochastic with known second
order statistics. The source accelerates from60m/s to 120m/s
during the measurement interval with an acceleration of6m/s2

in the same direction. Figures 6 show two figures of the MSE
(31) for each scenario, the first (a) as a function of the FrFT or-
dera, and the second (b) as a function of SNR for beamformers
in the space domain(a = 0), frequency domain(a = 1) and the
proposed method for the optimum order.

Figure 6a shows that for the accelerating source the optimum
order isa = 0.8, which is different than0 and1 (corresponding
to standard space and frequency domain beamformers). The im
provements in performance can be easily observed from this plot
especially for low SNR values.
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