
Chapter 6
Optical Implementation of Linear Canonical
Transforms

M. Alper Kutay, Haldun M. Ozaktas, and José A. Rodrigo

Abstract We consider optical implementation of arbitrary one-dimensional and
two-dimensional linear canonical and fractional Fourier transforms using lenses and
sections of free space. We discuss canonical decompositions, which are generaliza-
tions of common Fourier transforming setups. We also look at the implementation
of linear canonical transforms based on phase-space rotators.

6.1 Introduction

In this chapter we consider the problem of designing systems for optically im-
plementing linear canonical transforms (LCTs) and fractional Fourier transforms
(FRTs). It is well known that an optical Fourier transformer can be realized by
a section of free space followed by a lens followed by another section of free
space, and also by a lens followed by a section of free space followed by another
lens. Another approach is to use a section of quadratic graded-index media. That
these approaches can also be used to implement FRTs has been realized in the
nineties. One-dimensional systems have been dealt with in [1, 8, 9, 12, 15, 17,
18, 20, 24, 25, 28, 29] and two-dimensional systems have been dealt with in
[9, 11, 15, 19, 23, 25, 29, 34, 36], among others. For an overview of the optical
implementation of the FRT, see [27].

LCTs can be interpreted as scaled FRTs with additional phase terms. Thus, in
principle, if we have an optical FRT system, we can obtain an LCT system with
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some modifications, although handling the scale and phase may not always be
convenient. On the other hand, since FRTs are special cases of LCTs, knowing how
to realize a desired LCT means we can also realize any FRT easily.

While the design of one-dimensional systems is relatively straightforward, two-
dimensional systems bring additional challenges, mostly arising from the fact that
the parameters in the two dimensions can be different and this brings a number
of constraints with it. We will deal with these challenges and show how all two-
dimensional LCTs can be realized [36].

6.2 FRTs and LCTs

Two-dimensional LCT can be defined as:

fo.ro/ D L .T/fi.ri/ D
Z

h.roI ri/fi.ri/ dri;

h.roI ri/ D .det i�1Lio/
1=2 exp

�
i�.rt

oLooro � 2rt
iLioro C rt

iLiiri/
�
; (6.1)

where we define the column vector r as r D Œx; y�t. Lii and Loo are symmetric 2 � 2
matrices and Lio is a non-singular 2 � 2 matrix given by:

Lii �
�
`iix 0

0 `iiy

�
; Lio �

�
`iox 0

0 `ioy

�
; Loo �

�
`oox 0

0 `ooy

�
; (6.2)

where `oox; `iox; `iix and `ooy; `ioy; `iiy are real constants. FRTs, Fresnel transforms,
chirp multiplication, and scaling operations are widely used in optics to analyze
systems composed of sections of free space and thin lenses. These linear integral
transforms belong to the class of LCTs. Any LCT is completely specified by its
parameters.

Alternatively, LCTs can be specified by using a transformation matrix:

fo.ro/ D L .T/fi.ri/ D .det iB/�1=2

�
Z

exp
�
i�.rt

oDB�1ro � 2rt
iB

�1ro C rt
iB

�1Ari/
�

fi.ri/ dri ; (6.3)

The transformation matrix of such a system specified by the parameters
`oox; `iox; `iix and `ooy; `ioy; `iiy is
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T �
�

A B
C D

�
�

2
664

Ax 0 Bx 0

0 Ay 0 By

Cx 0 Dx 0

0 Cy 0 Dy

3
775

�

2
664

`iix=`iox 0 1=`iox 0

0 `iiy=`ioy 0 1=`ioy

�`iox C `oox`iix=`iox 0 `oox=`iox 0

0 �`ioy C `ooy`iiy=`ioy 0 `ooy=`ioy

3
775 :

with AxDx � BxCx D 1 and AyDy � ByCy D 1 [5, 42].
Propagation in free-space (or a homogeneous medium) and through thin lenses

are special forms of LCTs. The transformation matrix for free-space propagation
over a distance z and with constant refractive index n can be expressed as

TS .z/ D

2
664

1 0 	z
n 0

0 1 0 	z
n

0 0 1 0

0 0 0 1

3
775 : (6.4)

Similarly, the matrix for a cylindrical lens with focal length fx along the x
direction is

TQx.fx/ D

2
6664

1 0 0 0

0 1 0 0
�1
	fx
0 1 0

0 0 0 1

3
7775 ; (6.5)

and the matrix for a cylindrical lens with focal length fy along the y direction is

TQy.fy/ D

2
6664

1 0 0 0

0 1 0 0

0 0 1 0

0 �1
	fy
0 1

3
7775 : (6.6)

More general anamorphic lenses may be represented by a matrix of the form:

TQxy.fx; fy; fxy/ D

2
6664

1 0 0 0

0 1 0 0
�1
	fx

�1
2	fxy

1 0
�1
2	fxy

�1
	fy

0 1

3
7775 : (6.7)
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The transformation matrix approach has several advantages. First of all, if several
systems are cascaded, the overall system matrix can be found by multiplying
the corresponding transformation matrices. Second, the transformation matrix
corresponds to the ray-matrix in optics [37]. Third, the effect of the system on
the Wigner distribution of the input function can be expressed in terms of this
transformation matrix. This topic is extensively discussed in [3–7].

The 2D FRT also belongs to the family of LCTs:

fo.ro/ D F .�x; �y/fi.ri/

D
Z

A�r expŒi�.rt
oCtro � 2rt

oCsri C rt
iCtri/�fi.ri/ dri; (6.8)

where

Ct D
�

cot �x 0

0 cot �y

�
; Cs D

�
csc �x 0

0 csc �y

�
;

A�r D A�x A�y ; A�x D e�i.� O�x=4��x=2/

pj sin �xj
; A�y D e�i.� O�y=4��y=2/

pj sin �yj

with O�x D sgn.�x/, O�y D sgn.�y/. �x and �y are rotational angles of the FRT in
the two dimensions, which are related to the fractional orders ax and ay through
�x D ax�=2 and �y D ay�=2.

The output of a fairly broad class of optical systems can be expressed as the FRT
of the input [27]. This is a generalization of the fact that in certain special planes one
observes the ordinary Fourier transform. However, when we are dealing with FRTs,
the choice of scale and dimensions must always be noted. To be able to handle the
scales explicitly, we will modify the definition of the FRT by introducing input and
output scale parameters. Also allowing for additional phase factors that may occur
at the output, the kernel can be expressed as

K�x;�y.x; yI x0; y0/ D A�x expŒi�x2px�

� exp

�
i�

�
x2

s22
cot �x � 2xx0

s1s2
csc �x C x02

s21
cot �x

��

� A�y expŒi�y2py�

� exp

�
i�

�
y2

s22
cot �y � 2yy0

s1s2
csc �y C y02

s21
cot �y

��
: (6.9)

In this definition, s1 stands for the input scale parameter, s2 stands for the output
scale parameter, and px and py are the parameters of the quadratic phase factors.
The transformation matrix corresponding to this kernel can be found as
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T �
�

A B
C D

�
; (6.10)

where

A D
"

s2
s1

cos �x 0

0 s2
s1

cos �y

#
; C D

"
1

s1s2
Œpx cos �x � sin �x� 0

0 1
s1s2

Œpy cos �y � sin �y�

#
;

(6.11)

B D
�

s1s2 sin �x 0

0 s1s2 sin �y

�
; D D

"
s1
s2

sin �x.px C cot �x/ 0

0 s1
s2

sin �y.py C cot �y/

#
:

(6.12)

It can be deduced from the above equation that any quadratic-phase system can
be implemented by appending lenses at the input and output planes of a fractional
Fourier transformer [22, 25, 27].

6.3 Canonical Decompositions, Anamorphic Sections of Free
Space, and Optical Implementation of LCTs

One way of designing optical implementations of LCTs is to employ the matrix
formulation given in (6.3). The LCT matrix can be decomposed into matrices that
corresponds to more elementary operations such as free-space propagation, thin
lenses, etc.

6.3.1 One-Dimensional Systems

We first discuss one-dimensional systems, presenting two decompositions that
reduce to familiar optical arrangements for the special case of the Fourier transform.

Canonical Decomposition Type-1

The LCT system matrix T can be decomposed as

T D TS .z2/TQx.f /TS .z1/: (6.13)

which corresponds to a section of free space of length z1, followed by a thin lens of
focal length f , followed by another section of free space of length z2, as shown in
Fig. 6.1.
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z1 z2

input output
f

Fig. 6.1 Type-1 system which realizes arbitrary one-dimensional linear canonical transforms [36]

Both the optical system in Fig. 6.1 and the LCT have three parameters. Thus, it
is possible to find the system parameters uniquely by solving the above equations.
Doing so, the equations for z1; z2 and f in terms of `oo, `io, `ii are found as

z1 D `io � `oo

	.`io
2 � `ii`oo/

; z2 D `io � `ii

	.`io
2 � `ii`oo/

; f D `io

	.`io
2 � `ii`oo/

: (6.14)

Since FRTs are a special case of LCTs, it is possible to implement one-
dimensional FRT of any desired order by using this optical setup. The scale
parameters s1 and s2 may be specified by the designer and the additional phase
factors px and py may be made equal to zero. Letting `oo D cot �=s22, `ii D
cot �=s21 and `io D csc �=s1s2, one recovers Lohmann’s type-1 fractional Fourier
transforming system [15]. In this case, the system parameters are found as

z1 D .s1s2 � s21 cos �/

	 sin �
; z2 D .s1s2 � s22 cos �/

	 sin �
; f D s1s2

	 sin �
: (6.15)

Since the additional phase factors are set to zero, they do not appear in the equations.
However, if one wishes to set px and py to a value other than zero, it is again possible
by setting `oo D px cot �=s22 and substituting it in Eq. (6.14).

Canonical Decomposition Type-2

In this case, instead of one lens and two sections of free space, we have two
lenses separated by a single section of free space, as shown in Fig. 6.2. Again, the
parameters z, f1 and f2 can be solved similar to that for the Type-1 decomposition:

z D 1

	`io
; f1 D 1

	.`io � `ii/
; f2 D 1

	.`io � `oo/
: (6.16)
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f1

z

input output
f2

Fig. 6.2 Type-2 system which realizes arbitrary one-dimensional linear canonical transforms [36]

If `oo D cot �=s22, `ii D cot �=s21 and `io D csc �=s1s2 are substituted in these
equations, the parameters required to obtain a FRT can be found. The designer can
again specify the scale parameters and zero phase factor at the output to find:

z D s1s2 sin �

	
; f1 D s21s2 sin �

s1 � s2 cos �
; f2 D s1s22 sin �

s2 � s1 cos �
: (6.17)

Equations (6.14) and (6.16) give the expressions for the system parameters
of type-1 and type-2 canonical systems. But for some values of `oo, `io, `ii, the
lengths of the free space sections required may turn out to be negative, which is
not physically realizable. This constraint will restrict the range of LCTs that can
be realized with the suggested setups. However, in Sect. 6.3.3, this constraint is
removed by employing an optical setup that simulates anamorphic and negative
valued sections of free space. This system is designed in such a way that its effect
is equivalent to propagation in free space with different (and possibly negative)
distances along the two dimensions.

6.3.2 Two-Dimensional Systems

Now we turn our attention to two-dimensional systems. We first present an
elementary result which allows us to analyze two-dimensional systems as two
one-dimensional systems, which makes the analysis of two-dimensional systems
remarkably easier. We write the output of the system in terms of its input as follows:

fo.ro/ D
Z

h.ro; ri/fi.ri/ dri:

If the kernel h.ro; ri/ is separable, that is, h.ro; ri/ D hx.xo; xi/ hy.yo; yi/; then the
response in the x direction is the result of the one-dimensional transform
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fx.xo; yi/ D
Z

hx.xo; xi/ f .xi; yi/ dxi; (6.18)

and similar in the y direction. Moreover if the function is also separable, that is, if
f .r/ D fx.x/ fy.y/, the overall response of the system is

fo.r/ D fox.x/ foy.y/;

where

fox.x/ D
Z

hx.x; xi/ fix.xi/ dxi;

foy.y/ D
Z

hy.y; yi/ fiy.yi/ dyi:

This result has a nice interpretation in optics which makes the analysis of two-
dimensional systems easier. For example, in order to design an optical setup that
realizes imaging in the x direction and Fourier transforming in the y direction, one
can design two one-dimensional systems that realize the given transformations.
When these two systems are merged, the overall effect of the system is imaging
in the x direction and Fourier transforming in the y direction. Similarly, if we
have a system that realizes a FRT with rotational angle �x in the x direction and
another system which realizes a FRT with rotational angle �y in the y direction,
then these two optical setups will together implement a two-dimensional FRT with
the rotational angles �x and �y. So the problem of designing a two-dimensional
fractional Fourier transformer reduces to the problem of designing two one-
dimensional fractional Fourier transformers.

Canonical Decomposition Type-1

According to the above result, the x and y directions can be considered independent
of each other, since the kernel given in Eq. (6.1) or Eq. (6.3) is separable. Hence
if two optical setups realizing one-dimensional LCTs are put together, one can
implement the desired two-dimensional FRT. The suggested optical system is shown
in Fig. 6.3 and employs the following parameters:

z1x D `iox � `oox

	.`io
2
x � `iix`oox/

; z2x D `iox � `iix

	.`io
2
x � `iix`oox/

; fx D `iox

	.`io
2
x � `iix`oox/

;

(6.19)

z1y D `ioy � `ooy

	.`io
2
y � `iiy`ooy/

; z2y D `ioy � `iiy

	.`io
2
y � `iiy`ooy/

; fy D `ioy

	.`io
2
y � `iiy`ooy/

:

(6.20)
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z1y

input output
fxfy

z2y

z1x z2x

Fig. 6.3 Type-1 system that realizes arbitrary two-dimensional linear canonical transforms [36]

Arbitrary two-dimensional fractional Fourier transforming systems can be
obtained as a special case by using:

`oox D cot �x=s22; `iix D cot �x=s21; `iox D csc �x=s1s2; (6.21)

`ooy D cot �y=s22; `iiy D cot �y=s21; `ioy D csc �y=s1s2: (6.22)

When these equations are substituted into (6.19) and (6.20), the parameters of the
fractional Fourier transforming optical system can be found.

We saw that the derivations of the required system parameters can be carried
out by treating x and y independently. However, z1x C z2x D zx D z1y C z2y D zy

should always be satisfied so that the actions in the x and y dimensions meet at a
single output plane. Another constraint that needs to be satisfied is the positivity
of the lengths of the free space sections. z1x,z1y,z2x,z2y should always be positive.
These two constraints restrict the set of LCTs that can be implemented. As before,
this restriction can be dealt with by simulating anamorphic sections of free space
which provides us a propagation distance of zx in the x direction and a distance of
zy in the y direction where zx and zy may take negative values. By removing the
restriction that the propagation distance in the two dimensions has to be equal and
positive, all LCTs can be realized. This problem is solved in Sect. 6.3.3.

Canonical Decomposition Type-2

Two type-2 systems can also realize arbitrary two-dimensional LCTs, by using the
parameters

zx D 1

	`iox
; f1x D 1

	.`iox � `iix/
; f2xD

1

	.`iox � `oox/
; (6.23)
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f1x

z

input output
f1y f2x f2y

Fig. 6.4 Type-2 system that realizes arbitrary two-dimensional linear canonical transforms [36]

zy D 1

	`ioy
; f1y D 1

	.`ioy � `iiy/
; f2y D 1

	.`ioy � `ooy/
: (6.24)

As before, if Eqs. (6.21) and (6.22) are substituted in (6.23) and (6.24), the design
parameters for the FRT can be obtained.

In the optical setup in Fig. 6.4, we have the constraint zx D zy D z, which is
even more restrictive than with type-1 systems. Again zx and zy cannot be negative.
In order to overcome these difficulties, in the following section, we show how to
simulate anamorphic sections of free space with physically realizable components.

6.3.3 Simulation of Anamorphic Sections of Free Space

While designing optical setups that implement one-dimensional LCTs, we treated
the lengths of the sections of free space as free parameters. But some LCTs specified
by the parameters `oo; `ii; `io, turned out to require the use of free space sections with
negative length. This problem is again encountered in the optical setups realizing
two-dimensional LCTs. Besides, two-dimensional optical systems may require
different propagation distances in the x and y directions. In order to implement all
possible one-dimensional and two-dimensional LCTs, we will design a physically
realizable optical system simulating the required, but physically unrealizable free
space sections.

The optical system in Fig. 6.5 is composed of a Fourier block, an anamorphic lens
and an inverse Fourier block. It can simulate two-dimensional anamorphic sections
of free space with propagation distance zx in the x direction and zy in the y direction.
When the analysis of the system in Fig. 6.5 is carried out, the relation between the
input light distribution fi.x; y/ and the output light distribution fo.x; y/ is found as
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input output
fxfy

Fourier
Block

Inverse Fourier
Block

fi (x,y) fo (x,y)

Fig. 6.5 Optical system that simulates anamorphic free space propagation [36]

fo.x; y/ D C
“

expŒi�.x � xi/
2=	zx C .y � yi/

2=	zy�fi.xi; yi/ dxi dyi;

(6.25)

where

zx D s4

	2fx
; zy D s4

	2fy
: (6.26)

and where s is the scale of the Fourier and inverse Fourier blocks. fx and fy can take
any real value including negative ones. Thus it is possible to obtain any combination
of zx and zy by using the optical setup in Fig. 6.5. The anamorphic lens which is
used to control zx and zy may be composed of two orthogonally situated cylindrical
thin lenses with different focal lengths. The Fourier block and inverse Fourier block
are 2-f systems with a spherical lens between two sections of free space. Thus,
simulating an anamorphic section of free space requires 2 cylindrical and two
spherical lenses.

The system in Fig. 6.5 can also be adapted for the one-dimensional case, allowing
us to simulate propagation with negative distances. When the required free space
sections in the type-1 and type-2 implementations are realized by the optical setup
in Fig. 6.5, the optical implementation of all separable LCTs can be realized.

Specializing to the FRT, it is possible to implement all combinations of orders
if we can replace the free space sections with sections of anamorphic free space, if
need be. All combinations of orders ax and ay can be implemented with full control
on the scale parameters s1; s2 and the phase factors px; py, the latter which we can
set to zero if desired.
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6.4 Iwasawa Decomposition, Phase-Space Rotators,
and Optical Implementation of LCTs

The modified Iwasawa decomposition [38, 41, 43] states that any ray transformation
matrix T can be written as the product

T D
�

A B
C D

�
D
�

I 0
�G I

� �
S 0
0 S�1

� �
X Y

�Y X

�
D TLTSTO; (6.27)

where

G D � .CAt C DBt/ .AAt C BBt/�1 D Gt;

S D .AAt C BBt/
1=2 D St;

X C iY D .AAt C BBt/
�1=2

.A C iB/ D .Xt � iYt/
�1
:

(6.28)

The first matrix TL corresponds to an anamorphic quadratic-phase modulation,
which can be realized with a generalized lens. TS is a scaling operation, which
corresponds to optical magnification or demagnification. The last one, TO, is an
ortho-symplectic matrix (both orthogonal

	
Tt

O D T�1
O



and symplectic) [39, 40, 43].

The key to implementing an arbitrary LCT by using the Iwasawa decomposition
above is the ortho-symplectic matrix, which corresponds to an optical phase-space
rotator. If we know how to realize optical phase-space rotators, we can implement
any desired LCT.

The design of an arbitrary phase-space rotator is significantly simplified by using
the FRT. Indeed, any phase-space rotator can be written as an FRT, F .�x; �y/,
embedded between two ordinary image rotators: R.ˇ/F .�x; �y/R.˛/ [30]. Thus,
ultimately, the design of arbitrary LCTs boils down to our ability to design arbitrary
FRTs.

a b

Fig. 6.6 (a) Optical system for the FRT using three generalized lenses separated by distance z.
(b) Experimental implementation of a programmable optical FRT setup: two reflective phase-only
SLMs are used to realize the generalized lenses L1 and L2. The output signal is registered by a
CCD camera in real time [33]
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Here we consider a flexible optical setup for the FRT that is suitable for use
in many applications. In this setup, a change of the fractional angle �x or �y does
not lead to an additional scaling and/or phase factor, that occurs in other proposed
systems [16, 21, 35]. Specifically, this FRT system consists of three generalized
lenses with a fixed distance z between them, as shown in Fig. 6.6a. The first and the
last lens are identical (L3 D L1). Each generalized lens Lj .j D 1; 2/ is an assembled
set of two crossed cylindrical lenses, active in the two orthogonal directions x
and y, with phase modulation functions expŒ�i�g.j/x x2=	� and expŒ�i�g.j/y y2=	�,
respectively, where we still have the possibility to choose a proper normalization
parameter s. The lens powers g.j/x and g.j/y are given by [31]

g.1/x z D 1 � .	z=s/ cot.�x=2/;

g.1/y z D 1 � .	z=s/ cot.�y=2/;

g.2/x z D 2 � .s=	z/ sin �x;

g.2/y z D 2 � .s=	z/ sin �y:

(6.29)

The multiplication of the matrices corresponding to the constituent optical elements
yields the FRT transformation matrix [31]. The cylindrical lenses are oriented
such that �.1;2/1 D 0 and �.1;2/2 D �=2, where the angles are measured in the
counterclockwise direction and � D 0 corresponds to the y axis. Using the matrix
formalism it is easy to prove that the matrix of the composite system corresponds
to the separable phase space rotator and therefore the relation of the complex field
amplitudes at the input fi.ri/ and output fo.ro/ D F .�x; �y/fi.ri/ planes are given
by the separable FRT.

If we choose the normalization parameter as s D 2	z, the lens powers are given
by g.1/x z D 1 � cot.�x=2/=2, g.1/y z D 1 � cot.�y=2/=2, g.2/x z D 2 � 2 sin �x

and g.2/y z D 2 � 2 sin �y. Although �x or �y may take any value in the interval
.0; 2�/, we use the interval Œ�=2; 3�=2� because it corresponds to convergent
lenses. This interval will be sufficient in most applications. Nevertheless, the entire
interval .0; 2�/ can be covered, if necessary, thanks to the relation F�xC�;�yC�.r/ D
F�x;�y.�r/.

The phase-space rotator R.�˛/F .�x; �y/R.˛/ can be easily realized by ro-
tating the above FRT system by an angle ˛ around the optical axis [30]. In other
words, the cylindrical lenses are now oriented according to the angles �.1;2/1 D ˛

and �.1;2/2 D ˛ C �=2. Thus, the phase modulation function associated with each
generalized lens Lj .j D 1; 2/ takes the form

‰.j/.x; y/ D exp

"
�i�

g.j/x

	
.x cos˛ � y sin˛/2

#

� exp

"
�i�

g.j/y

	
.y cos˛ C x sin˛/2

#
: (6.30)
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This optical configuration permits us to perform various attractive operations. For
example, for ˛ D 0 we recover the basic FRT setup, whereas for ˛ D �=4 and
�x D ��y D � , the gyrator operation R.��=4/F .�;��/R.�=4/ is obtained.

One way of implementing a generalized lens is to use a programmable SLM. This
type of digital lens implementation allows one to modify the transformation angles
˛, �x, �y in real time. The corresponding optical setup is shown in Fig. 6.6b, where
two reflective phase-only SLMs are used for the generalized lens implementation.
Note that the third generalized lens is not required here because it only modulates
the phase of the output beam, which will be recorded as an intensity image by a
CCD camera. The feasibility of such a programmable setup has been demonstrated
experimentally [33].

We note that for the special case �x D ��y D � , the corresponding setup can also
be built using glass cylindrical lenses (of fixed power) instead of digital lenses. This
subclass of phase-space rotators include the gyrator and the antisymmetric FRT. In
such a case, the generalized lens is an assembled set of two identical convergent
cylindrical lenses, which are in contact with each other. The distance z between the
generalized lenses Lj is fixed and the lens powers are set according to g.j/x D j=z

and g.j/y D j=z. Note that the first and last generalized lens are identical. While
the transverse axes of the cylindrical lenses form angles �.j/1 D '.j/ C ˛ C �=4

and �
.j/
2 D �'.j/ C ˛ � �=4 with the y axis, note that the two cylindrical

lenses cross at an angle �.j/1 � �
.j/
2 D 2 '.j/ C �=2. The angles '.1;2/ follow

from sin 2'.1/ D .	z=s/ cot.�=2/ and 2 sin 2'.2/ D .s=	z/ sin � , where s is the
normalization parameter. Because of the requirement j cot.�=2/j � 1, we conclude
that the angle interval � 2 Œ�=2; 3�=2� is covered if 	z=s D 1. This scheme (with
normalization parameter s D 	z) has been used for the experimental realization
of the gyrator (when ˛ D 0) reported in [32] and the antisymmetric fractional FT
(when ˛ D �=4) reported in [10].

6.5 Conclusion

We reviewed some methods for optical implementation of one-dimensional and two-
dimensional fractional Fourier transforms (FRTs) and linear canonical transforms
(LCTs).

The systems we discussed are good for realizing arbitrary LCTs, which are a
more general class of transforms than FRT. Thus, they can be specialized to obtain
FRTs with desired orders and parameters as well.

We considered two main groups of approaches. The first is based on canonical
decompositions and involves anamorphic sections of free space. The second is based
on the modified Iwasawa decomposition and involves phase-space rotators.

LCTs represent a fairly general and important class of optical systems. Thus,
their optical implementation is of interest for a variety of optical signal and
image processing systems. In particular, these systems can be used for optical
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implementations of filtering in fractional Fourier or LCT domains [2, 13, 14, 26]
and for optical mode converters [32, 33].
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