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ABSTRACT 

We introduce the fractional Fourier domain decompo- 
sition for continuous and discrete signals and systems. 
A procedure called pruning, analogous to truncation of 
the singular-value decomposition, underlies a number 
of potential applications, among which we discuss fast 
implementation of space-variant linear systems. 

1. INTRODUCTION 

The continuous spectral decomposition (or expansion) 
and its discrete counterpart , the singular value decom- 
position (SVD), plays a fundamental role in signal and 
system analysis, representation and processing. The 
spectral decomposition of a function h(u, U‘) is 
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where the A, are the eigenvalues and the $,(U) are the 
eigenfunctions of h(u, U’) (that is, they are solutions of 
the equation J-”, h(u,u’)f(u’) du’ = Af(u). 

Turning our attention to  the discrete case, the SVD 
of an arbitrary N,  x N,  complex matrix H is 

HN,.XN, = uN,xN,  zN,xN,  vLcxN,1 (2) 

where uj and vj are the columns of U and V. It is 
common to assume that the oj are ordered in decreas- 
ing value. 

In this paper we define the continuous and discrete 
fractional Fourier domain decomposition (FFDD). While 
the FFDD may not match the SVD’s central impor- 
tance, we believe it is of fundamental importance in its 
own right as an alternative which may offer comple- 
mentary insight and understanding. Although explor- 
ing the full range of properties and applications of the 
FFDD is beyond the scope of this paper, we illustrate 
its usefulness by showing that it can be used for fast 
implementation of space-variant linear systems. We 
believe the FFDD has the potential to become a use- 
ful tool in signal and system analysis, representation, 
and processing (especially in time-frequency space) , in 
some cases in a similar spirit to the SVD. 

We refer the reader to [l, 2, 31 for an introduction 
to  the fractional Fourier transform as well as an ex- 
tensive list of references. Here we briefly mention a few 
vital properties. The a th  order fractional Fourier trans- 
form fa(u) = J-”, Ka(u ,  u’)f(u’) du’ (the explicit form 
of K,(u,u’) is given in the references) is unitary, the 
zeroth order fractional Fourier transform corresponds 
to the identity operation and the first order fractional 
Fourier transform corresponds to  the ordinary Fourier 
transform. Furthermore, the fractional Fourier trans- 
form is index additive, that is, the a1 t h  order fractional 
Fourier transform of the a2th order fractional Fourier 
transform is equal t o  the (a1 + a2)th order fractional 
Fourier transform. The at11 order fractional Fourier 
transform corresponds to a counter-clockwise rotation 
of the Wigner distribution of the function by an angle 

properties are also satisfied by the discrete fractional 

where U and V are unitary matrices. The superscript 
t denotes Hermitian transpose. is a diagonal matrix 
whose elements aj (the singular values) are the nonneg- 
ative square roots of the eigenvalues of HHt and HtH. 
The number of strictly positive singular values is equal 

the form of an outer-product (or spectral) expansion 
to the rank Of H. The SVD can be written in = a.ir/2 in the time-frequency plane. All of these 

R 

H = ojujv; 
j=l 
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Fourier transform [4, 51. Finally, we note that the 
fractional Fourier transform can be simulated with an 
O ( N  log N )  algorithm. 

(3) 
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2. THE CONTINUOUS FRACTIONAL 
FOURIER DECOMPOSITION 

Let h(u, U’) be a two-dimensional function, represent- 
ing either an image or the kernel of a one-dimensional 
linear system. Its fractional Fourier domain decompo- 
sition is defined as 

K a ( u ,  u”)c(a, u”)Ka(u”, U ’ )  du” da,  

(4) 
J_: 1: h(u,u’) = 

where c(a,  U”) is a family of one-dimensional weighting 
functions with parameter a. The integration interval is 
limited to [-2 21, since the fractional Fourier transform 
is periodic in a with period 4. Comparing the fractional 
Fourier decomposition with the spectral decomposition 
given in ( l ) ,  we can see that the integrands in both 
expressions consist of three terms. The definition of 
the FFDD can be rewritten in the form 

h ( U , U ’ )  = 
-2 -m 

where we have defined 

Equation (5) can be interpreted as an expansion of 
h(u, U‘) in terms of the basis functions Pa(u‘, U“, U‘“) 

with c(a ,  U!’) corresponding to the expansion coefficients. 
The basis functions in (6) can easily be shown to  

be linearly independent as a direct consequence of the 
fact that (Ka(u”, U ) ,  Kat (U,  u ” ) ) ~  is nonzero for all a ,  
a’. Here (., denotes a one-dimensional inner product 
with respect to the variable U .  

3. THE DISCRETE FRACTIONAL FOURIER 
DOMAIN DECOMPOSITION 

We now turn out attention to the discrete FFDD. Let 
H be a complex N ,  x N ,  matrix and { a ] ,  a 2 , .  . . , U N }  

a set of N = max(N,,N,) distinct real numbers such 
that -1 < a1 < a 2  < . . .  < a N  5 1. For instance, 
we may take the a k  uniformly spaced in this interval. 
The corresponding fractional Fourier domains are illus- 
trated in figure lb .  We define the FFDD of H as 

N 

H N , x N ,  = F i e k  [ A k ] N , x N ,  ( F & : k ) t ,  (7)  
k = l  

where A,,  A2, . . . , AN are diagonal matrices each of 
whose N’ = min(N,, N,) elements c k j ,  j = 1 ,2 , .  . . , N‘ 
are in general complex numbers. It will sometimes be 
a convenient way to  represent these diagonal elements 

a =-i- 

t 

Figure 1: (a) The ath fractional Fourier domain. The 
a = 0th and a = 1st domains are the ordinary time 
( t )  and frequency (f) domains. (b) N equally spaced 
fractional Fourier domains. (c) Block diagram of the 
FFDD. 

c k l ,  c k 2 ,  . . . , CkN’  for any k in the form of a column vec- 
tor Ck. When H is Hermitian (skew-Hermitian), C k  is 
real (imaginary). We also note that (FG:k) t  = F$c. 
The FFDD always exists and is unique, as will be dis- 
cussed further below. 

Comparing and contrasting the FFDD with the SVD 
will help gain insight into the FFDD. If we compare 
one term on the right-hand side of (7) with the right- 
hand side of (2), we see that they are similar in that 
they both consist of 3 terms of corresponding dimen- 
sionality, the first and third being unitary matrices and 
the second being a diagonal matrix. But whereas the 
columns of U and V constitute orthonormal bases spe- 
cific to  H, the columns of FGBk and FG:k constitute 
orthonormal bases for the akth fractional Fourier do- 
main. Customization of the decomposition is achieved 
through the coefficients c k j  (and perhaps also the or- 
ders a k ) .  

Denoting the j t h  columns of F i : k  and FG:k as 
[ F N B k ] j  and [ F & : k ] j  respectively, it now becomes possi- 
ble to write the kth term of the summation in (7) as an 
outer product of the form cj=l c k j  [ F i : k ] j ( [ F L : k ] j ) t  

so that (7) can be rewritten as 

N‘ 

N N ‘  

H 7; c k j  [ F & r k ] j  ( [ F i : k ] j ) t -  (8) 
k = l  j=1 

To a certain extent, the inner summation resembles 
the outer-product form of the SVD given in (3). The 
N,  x N,  matrices [ F L : k ] j ( [ F i : k ] j ) t  are of unit rank 
since they are the outer product of vectors. We will 

94 



denote these matrices by P k j  so that 

This equation is simply an expansion of H in terms 
of the basis matrices p k j ,  1 5 k 5 N, 1 5 j 5 N’, 
where the c k j  serve as the weighting coefficients of the 
expansion. 

When H is a square matrix of dimension N, the 
FFDD takes the simpler form 

N 

H = F-”k A k  (F-”’)’, (10) 
k=l  

where all matrices are N x N. 
Equation (9) is a linear relation between the ma- 

trices H and c k 3  with the four-dimensional tensor P k j  

representing the transforniation between them. Let 3-1 
denote a column ordering of the matrix H, with di- 
mensions NcN, x 1. Also let C denote the NN’ x 1 
column vector obtained by stacking the column vectors 
c 1  , c 2 ,  . . . , C N  on top of each other. Notice that we al- 
ways have NN’ = max(N,,N,)min(N,,N,) = NTNc.  
These column orderings determine a corresponding or- 
dering which converts the four-dimensional tensor (or 
two-dimensional array of matrices) P k g  into a square 
matrix P of dimensions NcN, x N,N,. (The vector 
obtained as the column ordering of the matrix P k j  for 
a specific k j ,  goes into the [ ( k  - 1)N’ + j] th column 
of the matrix P.) Now, we can write (9) as the linear 
square matrix equation 3-1 = PC. This equation will 
have a unique solution for C and thus Ck3 if and only if 
the columns of P are linearly independent. Since the 
columns of P are merely column orderings of the basis 
matrices Pk, , this is the same as linear independence of 
these basis matrices. Recalling the definition of these 
matrices (just before (9) ), their linear independence 
follows from the fact that the inner, product of any col- 
umn of Fa with any column of Fa (a’ # a )  is always 
nonzero. Thus the F F D D  always exzsts and as unzque 
(for given ak). 

4. APPLICATIONS 

Let H denote a linear matrix operator. Equation (7) 
represents a decomposition of this operator into N terms. 
Each term, taken by itself, corresponds to  filtering in 
the akth fractional Fourier domain [6, 21, where an 
nkth order forward transform is followed by multipli- 
cation with a filter function c k  and concluded with an 
inverse nkth order t,ransform. If a k  = 1, this corre- 
sponds to ordinary Fourier domain filtering. If a k  = 0, 

this corresponds to  multiplication of a signal with a 
filter function directly in the time domain. All terms 
taken together, the FFDD can be represented by the 
block diagram shown in figure IC and interpreted as 
the decomposition of an operator into fractional Fourier 
domain filters of different orders. An arbitrary linear 
system H will in general not correspond to multiplica- 
tive filtering in the time or frequency domain or in any 
other single fractional Fourier domain. However, H 
can always be expressed as a combination of filtering 
operations in different fractional domains. A su f ic ien t  
number of different-ordered fractional Fourier domain  
filtering operations “span” the space of all linear oper- 
ations. The fundamental importance of the FFDD is 
that it shows how an arbitrary linear system can be 
decomposed into this complete set of domains in the 
time-frequency plane. 

If H represents a time-invariant system, all filter CO- 

efficients except those corresponding to a k  = 1 will be 
zero. More generally, different domains will make vary- 
ing contributions to the decomposition. By eliminating 
domains for which the coefficients C k l  , C k 2 ,  . . . , CkN‘  are 
small, significant savings in storing and implementing 
H becomes possible. This procedure, which we refer to  
as pruning the FFDD, is the counterpart of truncating 
the SVD. An alternative to this selective elimination 
procedure will be referred to as sparsening, in which 
we simply work with a more coarsely spaced set of do- 
mains. 

In any event, the resulting smaller number of do- 
mains will be denoted by M < N. The upper limit 
of the summation in (7) is replaced by M and the 
equality is replaced by approximate equality, leading 
us to 3-1 M PC. If we solve this in the least-squares 
sense, minimizing 113-1 - PC(1, we can find the coeffi- 
cients resulting in the best M - d o m a i n  approximation 
to H. This procedure amounts to  projecting H onto 
the subspace spanned by the A4 basis matrices, which 
now do not span the whole space. 

Since the fractional Fourier transform can be com- 
puted in O ( N  log N) time, implementation of the pruned 
version of figure IC takes O ( M N  log N) time. If an ac- 
ceptable approximation to H can be found with a rela- 
tively small value of M ,  this can be much smaller than 
the time O(N,Nc) associated with direct implementa- 
tion of the linear system. Likewise, optical implemen- 
tation requires a space-bandwidth product of O( M N ) ,  
as opposed to O(N,N,) for direct implementation [7]. 
In passing, we note that the pruned FFDD is directly 
related to the concept of parallel filtering [8, 91. 

As an example, we consider the problem of recov- 
ering a signal consisting of multiple chirp-like compo- 
nents, which is buried in white Gaussian noise such that 
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the signal-to-noise ratio is 0.1. We assume the signal 
consists of 6 chirps with uniformly distributed random 
amplitudes and time shifts, and that the chirp rates are 
known with a f 5 %  accuracy. We find that the general 
linear optimal Wiener filter H for this problem can be 
approximated with a mean-square error of 5.2% by us- 
ing only M = 6 domains. H can also be approximated 
by truncating (3) to M terms, leading to an imple- 
mentation time of O ( M N ) .  For the present example, 
M = 6 results in an error of 20%, demonstrating an 
instance where the FFDD yields better accuracy than 
the SVD. 

Next we consider restoration of images blurred by 
a space-varying point-spread function whose diameter 
increases linearly with position. This time we use the 
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using the truncated SVD. However, this leads to a much 
more difficult nonlinear optimization problem because 
uj and vj in (3) are also unknowns, whereas the only 
unknowns in (7) are the & ,  leading to  a linear opti- 
mization problem. 

Other potential applications other than fast imple- 
mentation of linear systems include data compression, 
statistically-optimum filtering, and regularization of ill- 
posed inverse problems, all of which may be based on 
the same basic idea of appropriately pruning or weight- 
ing the different domains. 

We have not addressed the problem of optimally 
choosing the orders a k ,  which corresponds to choosing 
the basis matrices. When M = N ,  the basis matrices 
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to approximate. This knowledge may be statistical or 
in the form of restrictions on the set of matrices possi- 
ble. It is also possible to choose the orders optimally 
for a single specific matrix. 
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A natural extension of the FFDD would be the lin- 
ear canonical domain decomposition (LCDD) based on 
linear canonical transforms [IO]. 
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