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Abstract. Certain solutions to Harper’s equation are discrete analogues of (and approximations 

to) the Hermite–Gaussian functions. They are the energy eigenfunctions of a discrete algebraic 

analogue of the harmonic oscillator, and they lead to a definition of a discrete fractional Fourier 

transform (FT). The discrete fractional FT is essentially the time-evolution operator of the discrete 

harmonic oscillator. 

1. Introduction 

The three topics in the title, apparently diverse, are linked by a common theme: they may each 

be illuminated by focusing attention on certain functions, which we shall call Harper 

functions. Thesereal-valuedperiodicfunctions, definedontheintegers, areparticularsolutions to 

Harper’s equation. The Harper functions serve as discrete approximations to the Hermite– 

Gaussian functions, and furthermore, in an algebraic sense that will be made clear in section 

2, they are natural analogues of the Hermite–Gaussian functions. In [6, 8–10], and Ozaktas et 

al [24], the Harper functions were called the discrete Hermite–Gaussian functions. We have 

changed the name in recognition of the many other useful discrete approximations to the 

Hermite–Gaussians. Nevertheless, we shall give some evidence that the Harper functions 

deserve a special status among the various such discrete approximations. 

In section 2, we give an algebraic treatment of the discrete fractional Fourier transform 

(FT) that was initiated by Pei and Yeh in [26] (see also [23]), and consolidated in [8, 10]. The 

discrete FT has diverse applications, of which but one is the numerical calculation of the 

continuum FT of a given function. The continuum fractional FT has a well-established role 



 

in quantum physics and in signal processing; see, for instance, [1, 17, 20, 23, 24, 34]. Any 

discrete version of the fractional FT surely ought to be of use in numerical calculation: the 

discrete fractional FT we discuss does indeed perform this service; see [10]. On the other 

hand, it is desirable that a discrete version of the fractional FT can also perform theoretical 
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roles analogous to those of the continuum fractional FT. It is this theoretical aspect that is our main 

concern below. 

Atakishiyev and Suslov [2], Atakishiyev and Wolf [3], Grunbaum [13], Namias [21] and¨ 

manyothershaveinterpretedfractionalFTsastime-evolutionoperatorsofharmonicoscillators. As 

we shall see in section 3, the algebraic felicity of the discrete fractional FT, as we define it, 

makes this discrete fractional FT especially amenable to such an interpretation. 

The Harper functions have been studied mainly in the context of the Bloch electron 

problem, also called (sometimes in greater generality) the Azbel–Hofstadter problem. A brief 

discussion of this connection is given in section 4. 

The numerical data in section 5 may be viewed in two ways: it indicates the accuracy of 

the discrete fractional FT as an approximation to the continuum fractional FT; it indicates the 

accuracy of the discrete harmonic oscillator as an approximation to the continuum harmonic 

oscillator. 

Wootters [35] suggested the term discrete quantum system to refer to a quantum system 

withafinite-dimensionalstatespace. Suchastatespacemayberegardedasaspaceoffunctions 

whose argument admits only finitely many values. Some discrete quantum systems, such as 

that of the Bloch electron problem discussed below, or the BI oscillator examined in [4] are 

not directly related to continuum quantum systems. Nevertheless, discrete quantum 

mechanics may also be employed as a technique in the study of continuum quantum systems: 

in [14,15], phase and action-angle operators on continuum (infinite-dimensional) spaces were 

constructed as limits of analogous unitary operators on discrete spaces. 

We understand the theory of phase space as being a general study with applications to 

physics and signal processing. Such applications have been well established for the continuum 

theory of phase space; see, for instance, [11,19,25,29,31,34]. A satisfactory discrete version 

of the theory would also be expected to have such applications. In fact, a self-contained, 

practicable discrete theory would be highly desirable in signal processing and other numerical 

work—after all, an ensemble of numerical data is actually a discrete entity! Such a discrete 

theory ought to be an analogue of the continuum theory, and ought to serve as an 

approximation to the continuum theory in such a way that the continuum theory may be 

recovered via a limiting process. The question of approximating (or recovering) the 

continuum theory is not meaningful until a correspondence is established between discrete 

and continuum systems. One approach to such a correspondence is given in Schwinger [30, 

ch 7]. Another approach is introducedin[7]. However, 

adiscretetheoryencompassingWignerfunctions, linearcanonical transformations, coherent 

states, and so forth is, at the time of writing, far from complete. One achievement in this 

direction, thus far, has been in establishing a satisfactory definition of the discrete fractional 

FT. 

Let us begin by reviewing some properties of the continuum fractional FT. Recall that, 

given an integer k > 0, then the kth Hermite–Gaussian is defined to be the (real-valued) 

function hk : R → C such that 2 

hk(x) = π−1/42−k/2(k!)−1/2e−x /2Hk(x) 

where Hk denotes the kth Hermite polynomial. The continuum fractional FT of Namias [21] is 

the unitary operator , defined for all t ∈  R, such that 
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. 

It has the property that 

. 

The continuum FT, denoted F∞, is the special case 

[1/4] 

 F∞ = F∞ 
.
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Turningnowtothediscretescenario,letusconsideranintegern > 5. (Forthefoursmallest 

positive integers, our discussions would still hold, suitably interpreted with attention to some 

bothersometrivia.) Wewrite[X]n todenotethemodulonresidueclassofa(rational)integerX. The 

set of modulo n residue classes of the integers, denoted Z/n = {[0]n,[1]n,...,[n−1]n}, is a cyclic 

group with additive operation [X]n + [Y]n = [X + Y]n. Let L(n) denote the vector space over C 

with basis Z/n. We view L(n) as the space of functions Z/n → C. Any function f : Z → C with 

period dividing n may be regarded as an element of L(n), and may be identified with the 

vectorZ/n is an orthonormal basis.PX∈ Z/n f(X)[X]n. We make L(n) become an inner product 

space such that the set 

The discrete FT Fn with degree n is the unitary linear map L(n) → L(n), represented, with 

respect to the orthonormal (ordered) basis Z/n = {[0]n,...,[n−1]n} by the matrix with (X,Y)-

entry e2πiXY/n. We shall define the discrete fractional FT to be a continuous function from R to 

the group of unitary linear maps L(n) → L(n). This function, written , will satisfy the 

group homomorphism property 

 

for all t,t0 ∈  R. Our strategy, following Pei and Yeh [26], will be to find an orthonormal basis 

of L(n) consisting of eigenvectors of Fn, to insist that the discrete fractional FT has the same 

eigenvectors, and to specify the eigenvalue of  corresponding to each eigenvector. Since 

(Fn)4 = 1, the eigenvalues of Fn are all fourth roots of unity. (The exact multiplicity of each 

eigenvalue, as a function of n, is given in [18]; the multiplicities always differ from n/4 by at 

most unity.) Evidently, there is considerable freedom for choice of an orthonormal basis 

diagonalizing Fn. The basis we shall choose consists of vectors which, regarded as functions 

Z/n → C, are solutions to Harper’s equation. 

Harper’s equation is the condition 

= λh(X) 

on a functionbe the linear map L(n) 

→ L(n) such that 

Gn1]n + 2cos(2πX/n)[X]n + [X + 1]n 

thenthesolutions 

toHarper’sequationarepreciselytheeigenvectorsandeigenvaluesof Gn. SinceGn 

isHermitian,therearepreciselynlinearlyindependentsolutions. Theeigenvalues of Gn are not 

always distinct; Dickinson–Steiglitz [12] conjecture that the eigenvalues are distinct save that, 
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when 4 divides n, the eigenvalue 0 has multiplicity 2. However, as observed in [12], there 

does exist, uniquely up to a choice of sign, an orthonormal basis of real unit vectors 

simultaneously diagonalizing Fn and Gn. These vectors, with signs and an ordering suitably 

chosen, are precisely the Harper functions. 

In section 2 we shall define, for suitable integers k, a function hn,k : Z/n → C (with real 

values), called the kth Harper function of periodicity n. For given n, the n distinct values 

allowedfork aresuchthat, ifnisodd, then0 6 k 6 n−1, whileifniseven, then0 6 k 6 n−2 or k = n. 

For an integer X, we shall write hn,k([X]n) more briefly as hn,k(X), this notation indicating that 

we sometimes regard hn,k as a function Z → C with period dividing n. The vector PX∈ Z/n 

hn,k(X)[X]n will also be denoted by the symbol hn,k. Thus we also regard hn,k as a vector in 

L(n). 

Proposition 3 below, asserts that, for fixed k and increasing n, the Harper function hn,k 

converges to the kth Hermite–Gaussian function hk. The sense of the convergence may be 

taken either to be in the empirical numerical sense discussed in section 5, or else in the formal 

sense of [6,7]. In analogy with the definition in Namias [21, equation (2.6)] of the continuum 

fractional FT, we define, for each t ∈  R, a unitary linear map Fn
[t] 

: L(n) → L(n) such that for each index k. We call Fn
[t] the discrete 

fractional FT with degree n and exponent t. 

We shall also discuss another variant of the discrete fractional FT. This variant, denoted 

Fn
(t), will be constructed in section 2 using a different analogy with the continuum fractional 

FT. Although  (t) are not the same, we shall see in section 5 that the discrepancy 

diminishes quickly as n → ∞. 

Some rival candidates for the name ‘discrete fractional FT’ may be constructed in the 

same way, but with the Harper functions replaced by other discrete versions of the Hermite–

Gaussians, for instance, the Kravchuk functions used by Atakishiyev and Suslov [2], 

Atakishiyev and Wolf [3], or the eigenvectors of Fn discovered by Grunbaum [13]. Some very¨ 

accurate discrete versions of the Hermite–Gaussians are given in [8,27]. Another approach to 

the discrete fractional FT, with a fast algorithm, appears in [22]. Our concern in this paper, 

however, is to progress towards a natural and general theory of discrete phase space. An 

advantage afforded by the Harper functions is that they arise in a simple and natural algebraic 

way; the connection with the discrete harmonic oscillator underlines this point. At present, a 

disadvantage of the Harper functions is that no closed formula for their solution is known. 

2. Harper functions and the discrete fractional FT 

An n-dimensional square matrix A with entries Ai,j is said to be tridiagonal provided Ai,j = 0 

whenever |i − j| > 2. Here the indices are not interpreted modulo n. Tridiagonal matrices, and 

matrices that are almost tridiagonal (with the possibility that the top right or bottom left entries 
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may be non-zero) arise from time to time in discrete quantum mechanics; see, for instance, 

[5]. Before defining the Harper functions, it is worth making some observations about a fairly 

general class of real symmetric tridiagonal matrices. 

Let r be a positive integer. Consider a sequence v = (v0,...,vr) with each vj ∈  R. We say 

that v has a crossing number provided v0 and vr are both non-zero, and furthermore, if vj = 0 

for some 1 6 j 6 r −1, then vj−1vj+1 < 0. When v has a crossing number, we define the crossing 

number of v to be the number of integers j with 1 6 j 6 r such that either vj = 0 or else vj−1vj < 

0. The point of these apparently awkward definitions is that if v has crossing number t, then t 

is the minimum number of zeros of a continuous extension [0,r] → R of the function j 7→ vj. 

Now let a0,...,ar be real numbers, let b1,...,br be strictly positive real numbers, and let A be 

the tridiagonal (r + 1) × (r + 1) matrix whose (j,j) entry is aj for 0 6 j 6 r, and whose (k − 1,k) 

and (k,k − 1) entries are Ak−1,k = bk = Ak,k+1 for 1 6 k 6 r. Since A is a real symmetric matrix, 

it has real eigenvalues and real eigenvectors. By Wilkinson [33, section 5.37], A has no 

repeated eigenvalues. Let us enumerate an independent set of eigenvectors 
v

0,...,
v

r such that 

the corresponding eigenvalues λ0 
> 

··· > λr are monotonically decreasing. The following result, 

generalizing some arguments in [8] and [10] may be well known: it arises from a fairly direct 

combination of results in Wilkinson’s classic book [33]. 

Proposition 1. For the real symmetric tridiagonal matrix A as above, and an integer k with 

0 6 k 6 r, the eigenvector vk has crossing number k. 

Proof. Let λ = λk and v = vk. Write v = (v0,...,vr). Then 

(a0 − λ)v0 + b1v1 = 0 = brvr−1 + (ar − λ)vr and, for 1 

6 j 6 r − 1, we also have 

bjvj−1 + (aj − λ)vj + bj+1vj+1 = 0. 

These recurrence relations, together with the condition that v 6= 0, imply that v has a crossing 

number. We may assume that v0 = 1. For 0 6 k 6 r, let Ak be the leading (k + 1) × (k + 1) 

submatrix of A, and let χk be the characteristic polynomial χk(t) = det(Ak − t). Let χ−1 be the 

constant polynomial χ−1(t) = 1. It is shown in Wilkinson [33, section 5.38] that, for 1 6 k 6 r, 

the matrices Ak−1 and Ak have distinct eigenvalues. So if t is not an eigenvalue of the matrix 

A = Ar, then the sequence (χ−1(t),χ0(t),...,χr(t)) has a crossing number c(t) It is also shown in 

[33] that, for such t, the number of eigenvalues of A strictly greater than t is r +1



2214 L Barker et al 

 0, we deduce that the 

sequence , and furthermore, 

. By [33, section 5.38] 

vk = (−1) χk−1(λ)/b1 ...bk 

withtheinterpretationthatv0 = 
χ

−1(λ). Theassertionfollowsbecausethenumbersb1,...,br are 

strictly positive.  

Let us return to the discrete FT Fn : L(n) → L(n). For brevity, we shall often drop the 

subscript n. An easy calculation shows that F2[X] = [−X] for all integers X. Let E+ and E 

denote the eigenspaces of F2 corresponding to the eigenvalues 1 and −1, respectively. − 

For each integer X in the (open) interval 0 6 X 6 n/2, let e+(X) := [X] + [−X]. For each integer 

X in the (closed) interval 0 < X < n/2, let e−(X) := [X] − [−X]. Then E+ has an orthogonal 

basis consisting of the vectors e+(X), while E− has an orthogonal basis consisting of the vectors 

e−(X). Note that E+ has dimension either n/2 + 1 or (n + 1)/2 (whichever is an integer), while 

E− has dimension either n/2 − 1 or (n − 1)/2. 

The linear map G (defined in section 1) stabilizes the complementary subspaces E+ and 

E− of L(n). Let G+ and G− denote the restrictions of G to E+ and E−, respectively. With respect 

to the bases of E+ and E− 
mentioned above, 

G+ 
and 

G− are represented by real symmetric 

tridiagonal matrices satisfying the hypothesis of proposition 1. Up to a non-zero real factor, 

we define hn,0,hn,2,hn,4,... by insisting they be independent real eigenvectors of G+ such that the 

corresponding sequence of eigenvectors λn,0,λn,2,λn,4,... is strictly monotonically decreasing. 

By proposition 1, each hn,2j[0] 6= 0. We uniquely determine the vectors hn,2j by insisting they 

be of unit modulus, and hn,2j[0] > 0. Similarly, we define hn,1,hn,3,hn,5,... to be the independent 

real eigenvectors of G− such that the corresponding sequence of eigenvectors λn,1,λn,3,λn,5,... is 

strictly monotonically decreasing; moreover, each hn,2j+1 is of unit modulus, and hn,2j+1[1] > 0. 

We have thus completed the definition of the Harper functions hn,k, where the integer index k 

satisfies 0 6 k 6 n, and is subject only to the further conditions that, if n is even then k 6= n − 

1, while if n is odd then k 6= n. The Harper functions form an orthonormal basis of solutions 

to Harper’s equation: 

hn,k(X − 1) + 2cos(2πX/n)hn,k(X) + hn,k(X + 1) = λn,khn,k(X). 

We mention that our construction of the Harper functions, in effect, reduces Harper’s 

equationtotwoindependentsystemsofequations, eachofwhichistheeigenvectorproblemfor 
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arealsymmetrictridiagonalmatrix. Asindicatedintheproofofproposition1, theeigenvectors of 

such a matrix may easily be calculated by a recursive formula once the eigenvalues are known; 

furthermore, Wilkinson [33, section 5.38] describes a straightforward process for obtaining 

the characteristic polynomial. However, due to ill-conditioning, this is not an effective method 

for calculating the Harper functions numerically. 

Proposition 2. Up to multiplication by real factors, the vectors hn,k comprise the unique basis 

of L(n) simultaneously diagonalizing F2 and G. With respect to the basis E+, the coordinates 

of hn,2j have crossing number j. With respect to the basis E−, the coordinates of hn,2j+1 have 

crossing number j. If λn,k = λn,k0 , then either k = k0 or else k and k0 have opposite parity. 

Proof. Any basis B diagonalizing G must be contained in E+∪E−. By considering, separately, 

the actions of G on E+ and E−, the assertion follows from proposition 1.  

To discuss the matter of convergence to functions on the continuum, let us consider a 

square-integrable function ψ∞ : R → C, and a sequence of functions ψn : C(Z/n) → C defined 

for infinitely many (but not necessarily all) positive integers n. Let 

ν(n) := (n/2π)1/4. 

Roughly speaking, we say that the sequence (ψn)n converges to ψ provided, given an integer 

X, then for sufficiently large n we have an approximate equality 

ψn(X) ≈ ν(n)−1ψ(ν(n)−2X). 

For a real number x, let x(n) denote the largest integer not exceeding ν(n)2x. The condition 

that (ψn)n converges to ψ may be rewritten as 

ψ(x) ≈ ν(n)ψn(x(n)). 

(Greatercareoverthedefinitionofconvergenceisneededtoensurecertaindesirableproperties, for 

instance, the property that kψk2 = limn→∞ kψnk2. If the approximate equality symbol ≈ were 

interpreted as indicating a limit as n → ∞, then propositions 3, 5, 8 would still hold, but 

propositions 4, 6, 7, 9 would be false. See [6] or [7] for a formal definition of convergence.) 

The discrete Hermite–Gaussian functions hn,k converge to the Hermite–Gaussian 

functions in the following sense, from [6, theorem 2.5]. 

Proposition 3. Consider an integer k > 0. For suitable infinite sequences of positive integers 

n, the sequence (hn,k)n converges to hk. 

Numerical evidence in [8,10], Pei and Yeh [26], and below in section 5, indicates that the 

word ‘suitable’ may be omitted from proposition 3. A further indication in support of this 
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conjecture is provided by the crossing number characterization of the Harper functions, 

together with the fact that hk has precisely k zeros. 

A sense in which the discrete fractional FT  converges to the continuum fractional FT 

 may already be gleaned from proposition 3. We can make this more precise by 

introducing a notion of convergence of operators. Consider an operator A∞ on the space L2(R) 

of squareintegrable functions. Consider also an infinite sequence 
(
An)n, where each An is a 

linear map L(n) → L(n). We say that the sequence (An)n converges to A∞ provided the sequence 

(Anψn)n converges to A∞ψ∞, where ψ∞ is any function in the domain of A∞, and (ψn)n is any 

sequence with ψn ∈  L(n) such that (ψn)n converges to 
ψ

∞. (Note that our definition of 

convergence is precise, but it is in terms of the definition in [6,7] of convergence of vectors.) 

The result is as follows [6, theorems 2.7, 2.8]. 

Proposition 4. For suitable infinite sequences of positive integers n, the discrete fractional 

FT [t] converges to the continuum fractional FT [t] 

Fn F∞ . Furthermore, the discrete FT Fn converges to the continuum FT F∞. 

Proposition4tellsusthatFn
[1/4] isapproximatelyequaltoFn forlargen. Itisanunresolved 

question as to whether or not . The question is equivalent to asking whether or not 

hn,k, as an eigenvalue of Fn, always has eigenvalue ik. We conjecture an affirmative answer. 

Another version of a discrete fractional FT, denoted Fn
(t), is very similar to Fn

[t]: the two 

operators have the same eigenvectors but slightly different eigenvalues. Before defining 

Fn
(t), it is convenient to record the following easy consequence of proposition 4. 

Proposition 5. Given an integer k > 0, and writing µ(n,k) for the k + 1th largest eigenvalue 

of Gn, then for suitable infinite sequences of positive integers n, we have µ(n,k)n = 4 − 2π(2j + 

1)/n + o(1/n). 

Let η(n,k) be the k + 1th smallest eigenvector of the linear map 

 

By proposition 5, η(n,k) = n(2 − µ(n,k)/2)/2π − 1/2 = k + o(1). Defining the linear map Fn
(t) : 

L(n) → L(n) by 

 

then Fn
(t) may also be expressed by the formula 

. 

Thus, the Harper functions hn,k are the eigenvectors of Fn
(t) and ; the corresponding 

eigenvalues are the same up to o(1/n). The following result is immediate from propositions 4 

and 5. 
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Proposition 6. For suitable infinite sequences of positive integers n, the operator Fn
(t) 

converges to the continuum fractional FT . 

3. The discrete harmonic oscillator 

Let us begin with some general comments about discrete realizations of continuum quantum 

systems. Weexamineonlysingle-particlequantumsystemswithatime-invariantHamiltonian. In 

the case where the state space is a Hilbert space of countably infinite dimension, we say that 

the quantum system is a continuum quantum system. In the case where the state space is a 

finite-dimensional Hilbert space (a finite-dimensional inner product space), we say that the 

system is discrete. 

Consider a Hermitian operator H on a Hilbert space V (such that the domain of H is dense 

in V ). We interpret H as the Hamiltonian of a quantum system. By a state vector ψ of the 

system, we mean a differentiable function R → V satisfying the Schrodinger equation:¨ 

dψ(t) 

 Hψ(t) = i . 

dt 

We insist that the initial state ψ(0) has norm kψ(0)k2 = 1, whereupon, of course, kψ(t)k2 = 1 

for all t ∈  R. Let U(V) denote the group of unitary operators on V (understood to have domain 

and co-domain V ). The time evolution S of the system is defined to be the group 

homomorphism R → U(V) given by 

S(t) := e−iHt. 

(The right-hand expression extends uniquely to the domain V .) The Schrodinger equation¨ 

may be rewritten as 

ψ(t) = S(t)ψ(0). 

Consider now a Hermitian operator H∞ on L2(R) (with a dense domain). Consider also, 

for infinitely many positive integers n, Hermitian operators Hn on L(n) (with domain L(n)). 

Let ψ∞ = ψ∞(t) be a state vector of a quantum system with Hamiltonian H∞. For each n, let ψn 

= ψn(t) be a state vector of a quantum system with Hamiltonian Hn. Our concern is with the 

condition that, for all t ∈  R, the sequence (ψn(t))n (the sequence of ψn(t) indexed by n) 

converges to ψ∞(t). The following observation is immediate from the definition of 

convergence of operators. 

Proposition 7. Let us fix a sequence of positive integers n. Then the following two conditions 

are equivalent: 

(a) The time evolutions Sn(t) converge to the time evolution S∞(t) for all t. 
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(b) Given any initial states φn(0) converging to an initial state φ∞(0), then φn(t) converges to 

φ∞(t) for all t. 

Note that, when the equivalent conditions (a) and (b) hold, it does not follow that the 

Hamiltonians Hn converge to the Hamiltonian H∞. (The theory simply does not work with the 

Hamiltonians in place of the time evolutions.) To indicate the applicability of proposition 7 

in general, we record the following special case of a result in [7]. 

Proposition 8. Consideranyinfinitesequenceofpositiveintegersn. LetH∞ beanyHermitian 

operator (with a dense domain) on L2(R). Then there exist Hermitian operators Hn on L(n) 

such that the equivalent conditions (a) and (b) in proposition 7 hold. 

To illustrate propositions 7 and 8, let us now turn to the harmonic oscillator. A 

(singleparticle conservative) discrete quantum system is said to be a discrete harmonic 

oscillator provided the Hamiltonian is of the form 

 

where A and B are positive real numbers, and U,V are unitary operators such that 

VU = 
ζ
UV 

for some complex number ζ of unit modulus. 

As a special case, let U and V be, respectively, the unitary operators Un and Vn on L(n) 

given by 

 Un[X] = [X − 1] and Vn[X] = e2πiX/n[X] 

for X ∈  Z. Thus UnVn = ζnVnUn where ζn = e2πi/n. Putting A = B = ν(n)4 = n/2π, then our 

Hamiltonian H = Hn is the Hermitian operator on L(n) given by 

. 

More explicitly, 

 

The quantum system with Hamiltonian Hn is called a standard discrete harmonic oscillator. 

The time evolution of this quantum system is 

Sn(t) = e−iHnt = e−i(2Kn+1)t = e−itFn(−t/π). 

Ontheotherhand, thestandardcontinuumharmonicoscillatorisdefinedtobethequantum 

system whose Hamiltonian is 

 d2 2 

H∞ := −d ξ2 + ξ 
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as a Hermitian operator on functions in L2(R) with argument ξ ∈  R. Heuristically, one might 

regard the operators n(2 − Un − Un
−1)/2π and n(2 − Vn − Vn

−1)/2π as approximations to the 

operators −d2/dξ2 and ξ2, respectively. Thence, one might regard Hn as an approximation to 

H∞. Common sense might lead us to imagine that Hn converges to H∞. Alas, common sense 

is, on this occasion, deceptive. The operators Hn do not converge to H∞. We must shift our 

attention from the Hamiltonians to the time evolutions. 

It is well known that the solutions to the Schrodinger equation of the standard continuum¨ 

harmonic oscillator are 

H∞hk = (2k + 1)hk. 

Therefore, the time evolution for this quantum system is 

. 

Our comments on the time evolutions of standard harmonic oscillators, together with 

proposition 6, imply the following result. 

Proposition 9. TheHamiltoniansHn andHofthestandardharmonicoscillatorsaresuchthat, for 

suitable infinite sequences of positive integers n, the time evolution Sn(t) corresponding to Hn 

converges to the time evolution S∞(t) corresponding to H∞. 

4. Connections with the Bloch electron problem 

The Bloch electron problem models the behaviour of a charged particle constrained to a 

twodimensional square lattice and subject to a transverse time-invariant magnetic field. Let 

us write the state function as a function ψ : Z × Z → C. As explained in Harper [16], we can 

impose a particular gauge, called the Landau gauge, such that the Hamiltonian H is given by 

(Hψ)(X,Y) = ψ(X − 1,Y) + ψ(X + 1,Y) + e−2πiωXψ(X,Y − 1) + e2πiωXψ(X,Y + 1) 

where ω is a real constant proportional to the magnetic flux. See also Rammal–Bellissard 

[28]. Assuming that ω is rational, let us write write ω = m/n where m is an integer, and n is a 

positive integer coprime to m. The energy eigenstates ψ with energy eigenvalue E are given 

by 

ψ(X,Y) = e2πikY/nφ(X) 

where k is an integer, and φ is a solution to φ(X − 1) + φ(X + 1) + 2cos(2π(mX 

+ k)/n)φ(X) = Eφ(X). 
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Replacing X with a variable W such that mX + k = mW, then replacing φ with its image θ 

under a Galois automorphism such that e2πim/n 7→ e2πi/n, we recover Harper’s equation θ(W − 

1) + θ(W + 1) + 2cos(2πW/n)θ(W) = Eθ(W). 

AlthoughnoclosedformulaforthesolutiontoHarper’sequationisknown, Wiegmannand 

Zabrodin [32] have obtained some deep algebraic properties of the solutions. We ask whether 

the algebraic study of difference equations relating to the Bloch electron problem throws any 

light on the discrete fractional FT. We also ask whether material in this paper throws any light 

on the Bloch electron problem. 

5. Comparison of the Harper functions and the Hermite–Gaussians 

The techniques used in the arguments above appear to provide no information on the accuracy 

of the Harper functions as approximations to the Hermite–Gaussians. In this last section, we 

give some numerical information on the speed at which the Harper functions converge to the 

Hermite–Gaussians. 

In figure 1, with 
n 

= 16, the first six Harper functions h16,0,...,h16,5 (indicated by circles) 

are compared with the first six Hermite–Gaussians (indicated by the curves). The period n = 

16 is usually too small for useful calculation; the point is that, for this small value of n, and 

for k 6 3, the convergence already looks fairly good. 

 h (x) and h  (X) h (x) and h  (X) 
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 h (x) and h  (X) 
 4 16,4 

-2 2 

Figure 1. Harper functions h16,k compared with Hermite–Gaussians hk. 

  || h  - h || 

 40 10 20 30 40 

-1 0 1 
-0.4 

-0.2 

0 

0.2 

0.4 

0.6 

-2 -1 0 1 2 
-0.5 

0 

0.5 

h 
5 ( x) and h 

16 , 5  (X) 

10 20 30 
0 

0.005 

0.01 

0.015 

0.02 

0.025 

 || h 
n,0  - h 

0 || 2 

0 

0.01 

0.02 

0.03 

0.04 

0.05 
n,1 1 2 



 Harper functions 2223 

40 10 20 30 40 
10 20 30 

0 

0.02 

0.04 

0.06 

0.08 

0.1 

0.12 

0.14 

0.16 

 || h 
n,2  - h 

2 || 2 

0.02 

0.04 

0.06 

0.08 

0.1 

0.12 

 || h 
n,3  - h 

3 || 2 



2224 L Barker et al 
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n Figure 2. L2-difference between Harper functions hn,k and 

Hermite–Gaussians hk. 

 

Figure 3. Weighted difference (n,k) between eigenvalues. 

Figure 2 shows, for 10 6 n 6 40 and 0 6 k 6 5, the L2-norm khn,k − hkk2 of the difference 

between the Harper function hn,k and the Hermite–Gaussian hk. The difference was calculated 

by evaluating hn at the sample points, normalizing, and comparing with the vector hn,k. Again, 

the convergence looks fairly good. 

In section 3, we found it convenient to replace  with the slightly different version Fn
(t) 

of the fractional FT. The former is a little easier to calculate with, and has the desirable 

property that 1. The latter was defined quite algebraically as the exponential of an 
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imaginary multiple of a Hermitian operator. We take the view that, for many purposes 

(numerical or theoretical) it matters little which version one chooses; they have the same 

convergence properties because, for fixed k, the eigenvalues of  and Fn
(t) associated with 

their common eigenvector hn,k are e2πikt and e2πiη(n,k)t, respectively. We saw, in proposition 5, 

thatlimn→∞ η(n,k) = k (atleast,thisisprovenforsuitablesequencesofintegersn). Empirical 

confirmation that η(n,k) converges to k is given by the graphs, in figure 3, of 

 
against n, where 25 6 n 6 100 and 0 6 k 6 9. 

For any square-integrable function f : R → C, we can write 

(x) 

where the complex coefficients ck satisfy . Let us assume that f is reasonably 

well behaved (as it will be if, for instance, it is infinitely differentiable). Let fn denote the 

vector in L(n) whose coordinates are the sample values of f. For fixed f, if n is chosen large 

enough to ensure that, for each k, at least one of |ck| or khn,k − hkk2 is negligible, then Fn
[t]fn 

and Fn
(t) will be approximately equal to the vector of sample values of F∞

[t]f. Thus the discrete 

fractional FT, as an approximation, is good for those functions whose coefficients ck converge 

quickly to zero as k increases. 

In conclusion, we have given evidence that the discrete fractional FT is a good numerical 

approximation to the continuum fractional FT. This may be interpreted as saying that the 

discrete fractional FT provides a good numerical approximation to the time evolution of the 

continuum harmonic oscillator. At least as importantly, the discrete fractional FT is also an 

algebraic analogue of the continuum fractional FT, and provides an algebraic analogue of the 

continuum harmonic oscillator. Furthermore, the continuum constructions are realized as 

limits of the discrete constructions. These observations support the proposal that, from a 

general theoretical point of view, the discrete fractional FT (as defined above) and the Harper 

functions have particular merit as discrete versions of the continuum fractional FT and the 

continuum Hermite–Gaussians. 
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