5 research outputs found

    Electron and hole g-factors and spin dynamics of negatively charged excitons in CdSe/CdS colloidal nanoplatelets with thick shells

    Full text link
    We address spin properties and spin dynamics of carriers and charged excitons in CdSe/CdS colloidal nanoplatelets with thick shells. Magneto-optical studies are performed by time-resolved and polarization-resolved photoluminescence, spin-flip Raman scattering and picosecond pump-probe Faraday rotation in magnetic fields up to 30 T. We show that at low temperatures the nanoplatelets are negatively charged so that their photoluminescence is dominated by radiative recombination of negatively charged excitons (trions). Electron g-factor of 1.68 is measured and heavy-hole g-factor varying with increasing magnetic field from -0.4 to -0.7 is evaluated. Hole g-factors for two-dimensional structures are calculated for various hole confining potentials for cubic- and wurtzite lattice in CdSe core. These calculations are extended for various quantum dots and nanoplatelets based on II-VI semiconductors. We developed a magneto-optical technique for the quantitative evaluation of the nanoplatelets orientation in ensemble

    Addressing the exciton fine structure in colloidal nanocrystals: the case of CdSe nanoplatelets

    Full text link
    We study the band-edge exciton fine structure and in particular its bright-dark splitting in colloidal semiconductor nanocrystals by four different optical methods based on fluorescence line narrowing and time-resolved measurements at various temperatures down to 2 K. We demonstrate that all these methods provide consistent splitting values and discuss their advances and limitations. Colloidal CdSe nanoplatelets with thicknesses of 3, 4 and 5 monolayers are chosen for experimental demonstrations. The bright-dark splitting of excitons varies from 3.2 to 6.0 meV and is inversely proportional to the nanoplatelet thickness. Good agreement between experimental and theoretically calculated size dependence of the bright-dark exciton slitting is achieved. The recombination rates of the bright and dark excitons and the bright to dark relaxation rate are measured by time-resolved techniques

    Magneto-optics of excitons interacting with magnetic ions in CdSe/CdMnS colloidal nanoplatelets

    No full text
    Excitons in diluted magnetic semiconductors represent excellent probes for studying the magnetic properties of these materials. Various magneto-optical effects, which depend sensitively on the exchange interaction of the excitons with the localized spins of the magnetic ions can be used for probing. Here, we study core/shell CdSe/(Cd,Mn)S colloidal nanoplatelets hosting diluted magnetic semiconductor layers. The inclusion of the magnetic Mn2+ ions is evidenced by three magneto-optical techniques using high magnetic fields up to 15 T: polarized photoluminescence, optically detected magnetic resonance, and spin-flip Raman scattering. We show that the holes in the excitons play the dominant role in exchange interaction with magnetic ions. We suggest and test an approach for evaluation of the Mn2+ concentration based on the spin-lattice relaxation dynamics of the Mn2+ spin system.National Research Foundation (NRF)Accepted versionThis work was supported by the Deutsche Forschungsgemeinschaft through the International Collaborative Research Center TRR 160 (Projects B1, B2, and C7) and by the Russian Foundation for Basic Research (Grant No. 19- 52-12064 NNIO-a). D.R.Y. acknowledges the partial support of the Russian Science Foundation (Project No. 20-42-01008). S.S., S.D. and H.V.D. acknowledge partial support from the Singapore National Research Foundation under NRF–NRFI2016–08. A.A.G. acknowledges support of the Grants Council of the President of the Russian Federation. V.Yu.I. acknowledges support of the Polish National Science Center (Grant No. 2018/30/M/ST3/00276). H.V.D. gratefully acknowledges support from TUBA
    corecore