409 research outputs found

    Identifying component modules

    Get PDF
    A computer-based system for modelling component dependencies and identifying component modules is presented. A variation of the Dependency Structure Matrix (DSM) representation was used to model component dependencies. The system utilises a two-stage approach towards facilitating the identification of a hierarchical modular structure. The first stage calculates a value for a clustering criterion that may be used to group component dependencies together. A Genetic Algorithm is described to optimise the order of the components within the DSM with the focus of minimising the value of the clustering criterion to identify the most significant component groupings (modules) within the product structure. The second stage utilises a 'Module Strength Indicator' (MSI) function to determine a value representative of the degree of modularity of the component groupings. The application of this function to the DSM produces a 'Module Structure Matrix' (MSM) depicting the relative modularity of available component groupings within it. The approach enabled the identification of hierarchical modularity in the product structure without the requirement for any additional domain specific knowledge within the system. The system supports design by providing mechanisms to explicitly represent and utilise component and dependency knowledge to facilitate the nontrivial task of determining near-optimal component modules and representing product modularity

    Zircon ages in granulite facies rocks: decoupling from geochemistry above 850 °C?

    Get PDF
    Granulite facies rocks frequently show a large spread in their zircon ages, the interpretation of which raises questions: Has the isotopic system been disturbed? By what process(es) and conditions did the alteration occur? Can the dates be regarded as real ages, reflecting several growth episodes? Furthermore, under some circumstances of (ultra-)high-temperature metamorphism, decoupling of zircon U–Pb dates from their trace element geochemistry has been reported. Understanding these processes is crucial to help interpret such dates in the context of the P–T history. Our study presents evidence for decoupling in zircon from the highest grade metapelites (> 850 °C) taken along a continuous high-temperature metamorphic field gradient in the Ivrea Zone (NW Italy). These rocks represent a well-characterised segment of Permian lower continental crust with a protracted high-temperature history. Cathodoluminescence images reveal that zircons in the mid-amphibolite facies preserve mainly detrital cores with narrow overgrowths. In the upper amphibolite and granulite facies, preserved detrital cores decrease and metamorphic zircon increases in quantity. Across all samples we document a sequence of four rim generations based on textures. U–Pb dates, Th/U ratios and Ti-in-zircon concentrations show an essentially continuous evolution with increasing metamorphic grade, except in the samples from the granulite facies, which display significant scatter in age and chemistry. We associate the observed decoupling of zircon systematics in high-grade non-metamict zircon with disturbance processes related to differences in behaviour of non-formula elements (i.e. Pb, Th, U, Ti) at high-temperature conditions, notably differences in compatibility within the crystal structure

    Virtual Sensor Based on a Deep Learning Approach for Estimating Efficiency in Chillers

    Get PDF
    P. 307-319Intensive use of heating, ventilation and air conditioning (HVAC) systems in buildings entails an analysis and monitoring of their e ciency. Cooling systems are key facilities in large buildings, and par- ticularly critical in hospitals, where chilled water production is needed as an auxiliary resource for a large number of devices. A chiller plant is often composed of several HVAC units running at the same time, be- ing impossible to assess the individual cooling production and e ciency, since a sensor is seldom installed due to the high cost. We propose a virtual sensor that provides an estimation of the cooling production, based on a deep learning architecture that features a 2D CNN (Convolu- tional Neural Network) to capture relevant features on two-way matrix arrangements of chiller data involving thermodynamic variables and the refrigeration circuits of the chiller unit. Our approach has been tested on an air-cooled chiller in the chiller plant at a hospital, and compared to other state-of-the-art methods using 10-fold cross-validation. Our re- sults report the lowest errors among the tested methods and include a comparison of the true and estimated cooling production and e ciency for a period of several daysS

    Integration of decision support systems to improve decision support performance

    Get PDF
    Decision support system (DSS) is a well-established research and development area. Traditional isolated, stand-alone DSS has been recently facing new challenges. In order to improve the performance of DSS to meet the challenges, research has been actively carried out to develop integrated decision support systems (IDSS). This paper reviews the current research efforts with regard to the development of IDSS. The focus of the paper is on the integration aspect for IDSS through multiple perspectives, and the technologies that support this integration. More than 100 papers and software systems are discussed. Current research efforts and the development status of IDSS are explained, compared and classified. In addition, future trends and challenges in integration are outlined. The paper concludes that by addressing integration, better support will be provided to decision makers, with the expectation of both better decisions and improved decision making processes

    Radon and risk of extrapulmonary cancers: results of the German uranium miners' cohort study, 1960–2003

    Get PDF
    Data from the German miners' cohort study were analysed to investigate whether radon in ambient air causes cancers other than lung cancer. The cohort includes 58 987 men who were employed for at least 6 months from 1946 to 1989 at the former Wismut uranium mining company in Eastern Germany. A total of 20 684 deaths were observed in the follow-up period from 1960 to 2003. The death rates for 24 individual cancer sites were compared with the age and calendar year-specific national death rates. Internal Poisson regression was used to estimate the excess relative risk (ERR) per unit of cumulative exposure to radon in working level months (WLM). The number of deaths observed (O) for extrapulmonary cancers combined was close to that expected (E) from national rates (n=3340, O/E=1.02; 95% confidence interval (CI): 0.98–1.05). Statistically significant increases in mortality were recorded for cancers of the stomach (O/E=1.15; 95% CI: 1.06–1.25) and liver (O/E=1.26; 95% CI: 1.07–1.48), whereas significant decreases were found for cancers of the tongue, mouth, salivary gland and pharynx combined (O/E=0.80; 95% CI: 0.65–0.97) and those of the bladder (O/E=0.82; 95% CI: 0.70–0.95). A statistically significant relationship with cumulative radon exposure was observed for all extrapulmonary cancers (ERR/WLM=0.014%; 95% CI: 0.006–0.023%). Most sites showed positive exposure–response relationships, but these were insignificant or became insignificant after adjustment for potential confounders such as arsenic or dust exposure. The present data provide some evidence of increased risk of extrapulmonary cancers associated with radon, but chance and confounding cannot be ruled out

    Design mining interacting wind turbines

    Get PDF
    © 2016 by the Massachusetts Institute of Technology. An initial study has recently been presented of surrogate-assisted evolutionary algorithms used to design vertical-axis wind turbines wherein candidate prototypes are evaluated under fan-generated wind conditions after being physically instantiated by a 3D printer. Unlike other approaches, such as computational fluid dynamics simulations, no mathematical formulations were used and no model assumptions weremade. This paper extends that work by exploring alternative surrogate modelling and evolutionary techniques. The accuracy of various modelling algorithms used to estimate the fitness of evaluated individuals from the initial experiments is compared. The effect of temporally windowing surrogate model training samples is explored. A surrogateassisted approach based on an enhanced local search is introduced; and alternative coevolution collaboration schemes are examined
    corecore