
Strathprints Institutional Repository

Whitfield, R.I. and Smith, J.S. and Duffy, A.H.B. (2002) Identifying component modules. In: 7th
International Conference on Artificial Intelligence in Design, 2002-07-12 - 2002-07-17, Cambridge.

Strathprints is designed to allow users to access the research output of the University of Strathclyde.
Copyright c© and Moral Rights for the papers on this site are retained by the individual authors
and/or other copyright owners. You may not engage in further distribution of the material for any
profitmaking activities or any commercial gain. You may freely distribute both the url (http://
strathprints.strath.ac.uk/) and the content of this paper for research or study, educational, or
not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to Strathprints administrator:
mailto:strathprints@strath.ac.uk

http://strathprints.strath.ac.uk/

http://strathprints.strath.ac.uk/
http://strathprints.strath.ac.uk/
mailto:strathprints@strath.ac.uk
http://strathprints.strath.ac.uk/


 
 
Whitfield, R.I and Smith, J.S and Duffy, A.H.B (2002) Identifying component modules. In: 
Seventh International Conference on Artificial Intelligence in Design (AID'02), 15-17 July 2002, 
Cambridge, United Kingdom.
 
 
 
 http://eprints.cdlr.strath.ac.uk/6383/
 
 
 
This is an author-produced version of a paper presented at the Seventh International Conference 
on Artificial Intelligence in Design (AID'02), 15-17 July 2002, Cambridge, United Kingdom.
This version has been peer-reviewed, but does not include the final publisher proof corrections, 
published layout, or pagination. 
 
Strathprints is designed to allow users to access the research output of the University 
of Strathclyde. Copyright © and Moral Rights for the papers on this site are retained 
by the individual authors and/or other copyright owners. You may not engage in 
further distribution of the material for any profitmaking activities or any commercial 
gain. You may freely distribute both the url (http://eprints.cdlr.strath.ac.uk) and the 
content of this paper for research or study, educational, or not-for-profit purposes 
without prior permission or charge. You may freely distribute the url 
(http://eprints.cdlr.strath.ac.uk) of the Strathprints website. 
 
Any correspondence concerning this service should be sent to The 
Strathprints Administrator: eprints@cis.strath.ac.uk 
 

http://eprints.cdlr.strath.ac.uk/6383/
https://nemo.strath.ac.uk/exchweb/bin/redir.asp?URL=http://eprints.cdlr.strath.ac.uk


IDENTIFYING COMPONENT MODULES

R I WHITFIELD, J S SMITH AND A H B DUFFY
University of Strathclyde, CAD Centre, DMEM, James Weir Building,
75 Montrose Street, Glasgow, UK, G1 1XJ

Abstract. A computer-based system for modelling component
dependencies and identifying component modules is presented. A
variation of the Dependency Structure Matrix (DSM) representation
was used to model component dependencies. The system utilises a
two-stage approach towards facilitating the identification of a
hierarchical modular structure. The first stage calculates a value for a
clustering criterion that may be used to group component
dependencies together. A Genetic Algorithm is described to optimise
the order of the components within the DSM with the focus of
minimising the value of the clustering criterion to identify the most
significant component groupings (modules) within the product
structure. The second stage utilises a ‘Module Strength Indicator’
(MSI) function to determine a value representative of the degree of
modularity of the component groupings. The application of this
function to the DSM produces a ‘Module Structure Matrix’ (MSM)
depicting the relative modularity of available component groupings
within it. The approach enabled the identification of hierarchical
modularity in the product structure without the requirement for any
additional domain specific knowledge within the system. The system
supports design by providing mechanisms to explicitly represent and
utilise component and dependency knowledge to facilitate the non-
trivial task of determining near-optimal component modules and
representing product modularity.

1. Introduction

Various product-structuring principles such as product architectures (Erens
et al. 1996) and product platforms (Elgard et al. 1998) have been prescribed
to better support the documentation, rationalisation and re-use of
components in product structures. Researchers have increasingly sought to
improve the means by which the identification of such structures is
determined (Otto 2001, Gonzalez-Zugasti et al. 2000, Jiao et al. 1999,
Zamirowski et al. 1999). As such, the principle of modular design has



2

gained increasing prominence as a potential means to facilitate improved
product architectures/platform design and re-use support (Smith et al.
2001a, Smith et al. 2001b).

Modular design involves the creation of product variants based on the
configuration of a defined set of modules. Modules are commonly described
as groups of ‘functionally’ or ‘structurally’ independent components (Sosale
et al. 1997). The principal aim is to create variety, reduce complexity and
maximise kinship in designs and across product families. The major benefits
of a modular design include: efficient upgrades; reduced complexity;
reduced costs; rapid product development, and, improved design knowledge
structuring (Miller 1999, Muffato 1999, O’Grady et al. 1998). Despite the
existing evidence regarding its benefits and the increased understanding of
the capabilities of modularity as a design tool, ‘little work has been done on
these research issues’ (O’Grady et al. 1998) and ‘modularity has been
treated in the literature in an abstract form’ (Huang et al. 1998). That is,
there is little aid in the form of tools, techniques and methodologies for
practicing designers, and consequently, a need exists for approaches ‘to
determine modules, represent modularity, and optimise modular design’
(Huang et al. 1998).

A number of algorithms exist that may be applied to the optimisation of
modular design problems including simulated annealing (Kirkpatrick et al.
1983), Genetic Algorithms (GA) (Holland 1962) and Tabu search (Glover
1993). The optimisation algorithms tend to have a number of parameters
that affect their performance and are intrinsically linked to the problem
domain, for example, the annealing schedule for simulated annealing.

This paper demonstrates the application of a GA to component structure
optimisation where the objective was to determine the optimum modular
configuration for the design artefact. Modularisation research is discussed
within Section 2 in order to identify the requirements for a modular
identification system. The Dependency Structure Matrix (DSM) – Steward
(1981) was used as the dependency modelling technique due to its generic
applicability, ease of representation within a computer-based system, and,
its quantifiable nature. The DSM modelling technique and system are
described within Section 3. A multi-criteria GA was developed and adapted
for application to this particular type of problem and is described within
Section 4. Section 5 defines the ‘Module Strength Indicator’ (MSI) function
that is used to facilitate module identification and production of a ‘Module
Structure Matrix’ (MSM). Two different design artefacts were used to test
the performance and effectiveness of both the modularisation approach and
of the optimisation algorithm. These artefacts, and the results of the
optimisation are described within Section 6. Finally, conclusions are made
within Section 7.



IDENTIFYING COMPONENT MODULES 3

2. Modularisation Research

The main characteristics that determine modularity have been defined as the
degree of interaction/dependency between components both: within a
module, and, of different modules (Ulrich et al. 1991, Kusiak et al. 1996).

The criteria for the optimal modular product structure can thus, be
defined as the clustering of components such that the degree of
interaction/dependency is:

• Maximised internally within groups (modules).

• Minimised externally between groups (modules).
The challenge for modular design research is to identify this optimal

modular structure. Firstly, there is the requirement for the adequate
modelling of component and interaction knowledge to support its analysis.
Secondly, the resulting model must be optimised with respect to the above
criteria. Finally, modules must be identified based on the results of the
optimisation process.

A number of researchers have addressed the problem of modularising
product designs. The modelling requirements are generally fulfilled using
either interaction graphs (Kusiak et al. 1996) or matrix techniques
(Blackenfelt 2001, Jarventausta et al. 2001, Salhieh et al. 1999, Sosale et al.
1997). Optimisation criteria and techniques vary between applications. For
example, Salhieh and Kamrani (1999) utilised a P-median model to optimise
the sum of component similarities, Jarventausta and Pulkkinen (2001) the
Cluthill-McGee algorithm and Sosale et al. (1997) used a simulated
annealing algorithm. Alternatively Blackenfelt (2001) based component
groupings on their ability to fulfil the criteria of a series of strategic module
drivers such as ‘styling’ or ‘the make or buy decision’. Despite the
availability of varying methods to both model and optimise component and
interaction knowledge, there are disparities with respect to the methods for
the identification of modules within these optimised models. For example,
in Jarventausta and Pulkkinen (2001), and Salhieh and Kamrani (1999)
modules are identified manually by perusing an optimised matrix. In Sosale
et al. (1997) the results of the optimisation are presented in a list of
components each with a value indicating the module number to which the
component is assigned. However, it is not clear from their published works
(Sosale et al. 1997, Gu et al. 1997) how these modules are extracted from
the optimised matrix. The rationale given for their module groupings would
suggest that it is subject to manual interpretation of the matrix.

Due to the complex nature of the module identification problem it may
not always be appropriate, or possible, to manually identify modular
component groupings within graphs or matrices, as in Jarventausta and
Pulkkinen, 2001. This is especially pertinent as the design space becomes
more highly constrained i.e. when there are a large number of inter-



4

dependencies between components. In such cases, the clustered
matrix/graph may be densely populated and on first perusal yield no
significant modules. Therefore, an alternative analysis of the optimised
model would be required to facilitate module identification. Such analysis
would conceivably require the utilisation of further resources such as
domain specific knowledge. This would result in additional time and effort
on the part of the human designer and/or the development of computational
support systems. Further, when modules are readily identifiable, whether
manually or automatically, it may not always be appropriate to return a list
of definitive modules as suggested by Sosale et al. (1997). For example,
what is modular from one perspective (e.g. assembly) may not be modular
from another (e.g. maintenance) (Miller 1998). Thus, we see that the
modular design problem is further complicated by the fact that differing
modular configurations support different perspectives of the problem. In
addition, the modular design may also exist over different hierarchical levels
of the product structure. Thus, the inherent hierarchical modularity is not
exposed when the outcome of the identification phase is presented as a list
(Sosale et al. 1997) or as definitive module boundaries (Salhieh et al. 1999).

Given the above, the following must be determined in order to develop a
means to facilitate improved module identification:

• Inherent modularity.

• Potentially differing modular configurations.

• Differing hierarchical levels of modularity in the product structure.
Our aim is to facilitate module identification with respect to the above

modular requirements. The means of doing so is to combine the strengths of
both the designer, in terms of their domain and problem specific knowledge,
and of computer support, in terms of its advanced capabilities for rapid and
precise analysis and calculation.

3. Dependency Structure Matrix

The Dependency Structure Matrix (DSM), also known as the Design
Structure Matrix, has been extensively used to represent concepts such as:
tasks, resources and parameters, as well as the inter-concept dependencies.
The DSM is generic in nature, but due to its compactness, easily
quantifiable nature, and ability to represent most design activity
relationships, has seen considerable use in the analysis and management of
the product development process (Coates et al. 2000, Eppinger et al. 1994,
Kusiak et al. 1990, Steward 1981). More recently however, the DSM has
been applied to model various design product concepts and their
dependencies, from functions (Jarventausta et al. 2001) to parts (Salhieh et
al. 1999).



IDENTIFYING COMPONENT MODULES 5

The DSM consists of a list of concepts (activities, functions, parts) that
are represented in the same order in both the row and column of the matrix.
The matrix part represents the dependencies between the concepts. Steward
(1981) originally represented the dependencies in a binary form: 0 to
indicate no dependency, and, 1 to indicate a dependency, however, the
modelling technique has evolved to reflect a measure of the degree of
dependency, termed its weight.

A DSM modelling and analysis system was constructed with the focus of
providing mechanisms to enable the optimisation of the order of
components with respect to a pre-determined clustering criterion – Figure 1.

The system allows the creation of a matrix containing any number of
components with the matrix changing size automatically as components are
added or removed. The dependencies between components are currently
limited to representing a single type, e.g. a geometrical perspective,
however, work is underway to enable the representation of multi-
dimensional dependencies. Selecting a cell within the matrix will change the
state of the dependency from either independent or dependent. The user may
also change the weight of the dependency, which is reflected by its colour.

Figure 1. Dependency Structure Matrix system.



6

The order of the components within the matrix may be managed
manually by dragging either of the rows or columns into a new position. The
value for the clustering criterion is simultaneously re-calculated, assisting
the user in the determination of an improved modular structure.
Alternatively, the product structure may be optimised using one of the
optimisation algorithms available within the optimisation module. The
system can simultaneously manage the optimisation of multiple design
artefacts although this will obviously take longer on a computer with a
single processor.

4. Modular Structure Optimisation

A number of optimisation algorithms such as hill-climbing and simulated
annealing were developed and tested within the optimisation of the order of
components within the DSM (Whitfield 2001b). The difficulty in optimising
the DSM lies in the number of combinations of possible component orders.
For example, a matrix containing 30 components has 6.652*1032 possible
combinations. An exhaustive search for this type of problem is clearly
inappropriate. There is also a requirement for the optimisation technique to
be able to deal with discrete, multi-modal, noisy and multi-criteria solution
spaces that are common within the DSM (Todd 1997).
The general procedure for Genetic Algorithms developed by Goldberg
(1989a), has been used to enable the evolution of optimal modular
structures. The objective of the GA in this particular application is to
minimise the value for the clustering criterion – Equation 1. Additional
clustering criteria will be included to investigate other modular performance
characteristics. The algorithm is illustrated within Figure 2.

Gene 1

Gene 3

Gene 2

Gene N

Mutation operation

Parent 1 Child 1

Parent 1

Parent 2

Child 1

Child 2

Crossover operation

Roulette
Wheel

No

...

Evaluate Fitness

Select

Finish?

Genetic operations

Encode Solution
Space

Design
Space

Start

Stop

Figure 2. A general structure for genetic algorithms.



IDENTIFYING COMPONENT MODULES 7

The system’s GA is generic in nature using object-oriented techniques
and allows the encoding of a sequence of any type of concept. Within this
application, the chromosome is initially encoded as a random order of
components. This randomisation attempts to ensure that the chromosome
represents a unique point in the solution space, such that the group of
chromosomes are randomly distributed throughout – Figure 3. In the case of
the DSM problem, the group of chromosomes, or population, represent
orders of components that generally have a poor initial clustering criterion.
The chromosomes are then evaluated within the DSM with respect to the
criteria.

Gene 1

Gene 2

Gene 3

Gene 4

Gene 5

Gene 6

Gene N

…

C
om

po
ne

nt
1

.
C

om
po

ne
nt

5
.

C
om

po
ne

nt
8

.
C

om
po

ne
nt

4
.

C
om

po
ne

nt
6

.
C

om
po

ne
nt

3
.

C
om

po
ne

nt
9

.
C

om
po

ne
nt

2
.

C
om

po
ne

nt
7

.
C

om
po

ne
nt

10

C
om

po
ne

nt
7

.
C

om
po

ne
nt

2
.

C
om

po
ne

nt
4

.
C

om
po

ne
nt

1
.

C
om

po
ne

nt
8

.
C

om
po

ne
nt

5
.

C
om

po
ne

nt
6

.
C

om
po

ne
nt

10
.

C
om

po
ne

nt
3

.
C

om
po

ne
nt

9

C
om

po
ne

nt
9

.
C

om
po

ne
nt

10
.

C
om

po
ne

nt
5

.
C

om
po

ne
nt

7
.

C
om

po
ne

nt
6

.
C

om
po

ne
nt

2
.

C
om

po
ne

nt
1

.
C

om
po

ne
nt

3
.

C
om

po
ne

nt
8

.
C

om
po

ne
nt

4

…

Figure 3. Genetic representation of component order.

A Roulette-wheel type selection procedure is used where each
chromosome is given a portion of the wheel that is proportional to its
performance (Goldberg 1989a). Chromosomes with higher performance
characteristics therefore have a greater chance of surviving, although it is
possible for lower performance chromosomes to be passed through to the
next generation.

Crossover and mutation operations are then performed upon the selected
chromosomes to produce the next generation. Two parent chromosomes are
selected at random and removed from the population. The two parents are
then crossed based upon a probability of crossover to produce two children
containing genetic information from both parents. Mutation works in a
similar manner on a single chromosome to produce a small change in the
parent. The crossover and mutation operations encoded within the GA are
listed within Table 1 and Table 2.



8

Table 1. Crossover operators encoded within GA.

Initial Description Reference
1PX One Point Crossover Murata & Ishibuchi (1994)
2PEX Two Point End Crossover Murata & Ishibuchi (1994)
2PCX Two Point Centre Crossover Murata & Ishibuchi (1994)
2PECX Two Point End/Centre Crossover Murata & Ishibuchi (1994)
PBX Position Based Crossover Syswerda (1991)
IPX Independent Position Crossover Murata & Ishibuchi (1994)
PMX Partially Mapped Crossover Goldberg & Lingle (1985)
OX Ordered Crossover Davis (1985)
CX Cycle Crossover Oliver et al. (1987)
ERX Edge Recombination Crossover Whitley et al. (1989)
EERX Enhanced Edge Recombination

Crossover
Starkweather et al. (1991)

SCX Subtour Chunks Crossover Greffenstette et al. (1985)
AEX Alternating Edges Crossover Greffenstette et al. (1985)
IX Inversion Crossover Goldberg (1989b)

The new population is then re-evaluated with respect to the performance
criteria. A check is made to determine whether the GA has completed a pre-
determined number of generations, finishing if it has, otherwise repeating
this evaluation, selection, crossover and mutation processes.

Table 2. Mutation operators encoded within GA.

Initial Description Reference
2ORS Two Operation Random Swap Murata & Ishibuchi (1994)
2OAS Two Operation Adjacent Swap Murata & Ishibuchi (1994)
3ORS Three Operation Random Swap Murata & Ishibuchi (1994)
3OAS Three Operation Adjacent Swap Murata & Ishibuchi (1994)
SOM Shift Operation Mutation Murata & Ishibuchi (1994)

The parameters for the genetic algorithm and the optimisation criteria
may be selected using the optimiser dialog shown within Figure 4. The
population size, number of generations, crossover probability and mutation
probability may be entered within the text fields. An indicator displays the
genetic algorithm’s progress through the evaluation of the populations.

A previous investigation attempted to determine the parameters for
generic combinatorial optimisation using GAs (Todd 1997), however
research has demonstrated that the parameters for the GA are intrinsically
tied to the domain (Whitfield et al. 2001a).

Checking each combination of crossover and mutation operators and
probabilities identified suitable GA parameters for this particular domain.
The results indicated that the two point end crossover and two operation
adjacent swap mutation operators with 80% and 20% probabilities



IDENTIFYING COMPONENT MODULES 9

respectively was the most successful set-up for the GA. The population size
and generation count were both set at 100.

Figure 4. Optimiser dialog.

Criteria may be selected for the basis of optimisation using the Criteria
Set-up area of the optimisation dialog. The optimisation may be either single
criterion or multi-criteria where the individual objectives are minimisation,
maximisation, target value, or any combination.

After completion of the optimisation, a list of optimal component orders
is displayed within the solution table. The list displays the component order,
the values for the criteria selected, the fitness and the rank for each of the
solutions. For multi-criteria problems, the genetic algorithm will produce a
number of solutions that represent the trade-off between the criteria.
Selecting one of the optimum solutions within the solution table will display
the component ordering within the DSM.

The clustering criterion is represented within Equation 1. The DSM
model may however have any number of criteria included to increase the
diversity of the optimisation. Equation 1 represents the summation of the
dependencies both above and below the leading-diagonal multiplied by their
distance from the leading-diagonal on the basis of their weight. The focus of
minimising the clustering criterion is therefore to get the dependencies as
close to the leading diagonal as possible grouping component dependencies
together. Priority is automatically given towards higher weighted
dependencies.

( )( )∑ ∑= =
×−= N

i

N

j jiwijCriterionlustering
1 1 ,C 1



10

Where: N is the number of components in the DSM,
i and j are the row and column indices, and
wi,j are the dependency weights.

The criteria values are automatically re-calculated and updated when
new components are added to the matrix, or when component dependencies
are changed, and are displayed within the criteria area.

5 Module Identification

A function was derived to assign a ‘Module Strength Indicator’ (MSI) to all
potential modules within the design artefact. The MSI function consists of
two parts, Equations 2 and 3 below. Equation 2 provides the designer with
the mean value of the internal dependencies within the module determined
by the indices and represents the strength of the internal dependencies of a
component grouping. Equation 3 determines a mean value for the external
dependencies within the module and represents the strength of the external
dependencies of the component grouping. The focus of the MSI function is
towards identifying modules that have a maximum number of internal
dependencies and a minimum number of external dependencies – Figure 5.

1

1

2

3

4

5

6

7

8

9

10

11

2 3 4 5 6 7 8 9 10 11

External
dependencies

External
dependencies

Internal
dependencies

Components
in module

Figure 5. Internal and external dependencies of module.

Subtracting Equation 3 from Equation 2 can derive the relative
modularity of a clustered artefact, with respect to its components’ internal
and external dependencies. The MSI function - Equation 4, therefore
provides a modularity metric directly related to the overall modularity
characteristics of the design artefact.



IDENTIFYING COMPONENT MODULES 11

( ) ( )12
2

12

,

2

1

2

1

nnnn

w

MSI

n

ni

n

nj
ji

i −−−
=

∑∑
= =

2

( )( ) ( ) ( )( )122

,,

121

0
,,

22
2

2

1

1 2

1

nnnN

ww

nnn

ww

MSI

N

ni

n

nj
ijji

n

i

n

nj
ijji

e −×−×

+
+

−××

+
=

∑∑∑∑
= == =

3

ei MSIMSIMSI −= 4

Where; n1 = index of first component in module, and
n2 = index of last component in module.

Given a maximum dependency weight within the DSM of 1.0, the
maximum MSI value that can be returned from Equation 4 is 1.0. This
represents the strongest possible module solution, i.e. a module consisting
entirely of maximum weight internal dependencies (1.0 from Equation 2),
with no related external dependencies (0.0 from Equation 3). The system
provides the functionality to allow the designer to specify module
identification criteria. The designer can choose to: exclude external
dependencies (use only Equation 2); normalise the MSI results, and, assign
colours to incremental value ranges of the MSI. The system then traverses
through the DSM calculating an MSI value for all possible modules.

The MSI technique results in an alternative representation of the DSM.
The resulting ‘Module Structure Matrix’ (MSM) depicts, as different
coloured cells, the relative modularity of all available component modules
within it. Thus, the MSM exposes the boundaries of any existing modular
structure based on the given dependencies. The MSM identifies inherent
hierarchical modularity within highly constrained problems with densely
populated dependency matrices that otherwise may not have been readily
apparent. Further, as the coloured groupings represent different strengths of
modularity the MSM reveals the inherent hierarchical modularity within the
structure.

The MSM provides an indication of the existing modularity within the
design artefact. The designer is free to adapt the module configuration
within the boundaries of the inherent modularity identified. Designers can
define an appropriate modular structure from the resulting MSM based on
their specific design requirements and domain knowledge.



12

6 Case Studies

The module identification approach is demonstrated within two case studies.
The studies, taken from published literature represent: a climate control
system (Pimmler et al. 1994), and, an alternator (Sosale et al. 1997). The
climate control example depicts the components and their dependencies
from a material perspective. The alternator case depicts dependencies based
on the re-use and recycling life-phase of the artefact’s components.

6.1 CLIMATE CONTROL SYSTEM

Figure 6 presents a DSM for a climate control system. The system’s
components are represented by the same arbitrary structure in both the
column and rows. The crosses in the central part of the matrix represent the
dependencies between the components, which in this case, are all equally
weighted. The current value for the clustering criterion is shown in the left-
hand bottom corner of the box. The value for the clustering criterion for this
structure is 87.0.

Figure 6. Climate control system DSM.

Figure 7 shows an optimised structure for the climate control DSM. We
can see that the clustering criterion has been reduced by approximately 65%
(from 87 to 31). It is also apparent that the dependencies within the matrix
are now closer together and are clustered into a number of groupings around
the diagonal, indicating potential modules.



IDENTIFYING COMPONENT MODULES 13

Figure 7. Optimised climate control system DSM.

However, the potential modular configurations and the applicable
hierarchical modularity within the given solution are not apparent from the
optimised DSM. The MSI function was applied to highlight modular
configurations and hierarchical modularity. The resulting MSM is presented
in Figure 8. This matrix was obtained through the application of Equation 4
to the DSM within Figure 7 with normalised results. The matrix provides a
mechanism from which to identify potential modules of varying modular
strength represented by differing colours. The results indicate that there are
a number of modular configurations and that a hierarchical modularity exists
within the structure.

Table 3a catalogues all available modules within the structure at the
differing module strengths highlighted by the MSM. An example of a
hierarchical modular configuration based on the available module catalogue
is given in Table 3b.



14

Figure 8. Climate control system MSM.

Table 3a. Module Catalogue for Climate Control System.

Modular Strength Module Components
1.0 M1 Radiator, Engine Fan

M2 Condenser, Compressor
M3 Compressor, Accumulator, Evaporator Core
M4 Heater Core, Blower Motor

0.9

M5 Blower Motor, Evaporator Case
0.8 M6 Components within M2 and M3

M7 Components within M4 and M50.7
M8 Components within M5 and Blower Controls
M9 Components within M8 and Heater Core
M10 Components within M4 and Evaporator Core

0.6

M11 Components within M6 and Engine Fan
M12 Components within M11 and Radiator
M13 Components within M6 and M7

0.5

M14 Components within M7, Evaporator Core and
Blower Controls

M15 Components within M1, M6, Refrigeration
Controls and Heater Hoses

M16 Components within M1 and M13 and Blower
Controls

0.4

M17 Components within M13, Blower Controls and
Command Distributor

0.2 M18 All



IDENTIFYING COMPONENT MODULES 15

Table 3b Hierarchical Module Configuration Example

Configuration Module Components
M1 Engine Fan, Radiator
M6 Condenser, Compressor, Accumulator,

Evaporator Core.

Level i

M7 Heater Core, Evaporator Case, Blower Motor
Level ii M13 M6 and M7

Level iii M16 M1 , M13 and Blower Controls
Level iv M18 M16, Sensors, Air Controls, Refrigeration

Controls, Heater Hoses, Command Distributor
and Actuators

6.2 ALTERNATOR

The DSM for an Alternator is presented in Figure 9. Again, the components
are represented in an arbitrary structure and the crosses represent the
dependencies between the components.

Figure 9. Alternator DSM.

The weightings were calculated as the sum of a number of different life-
phase aspects such as: maintenance, upgrading, and reconfiguration. The
alternator case therefore represents a more highly constrained problem than
that of the climate control system, as indicated by the densely populated
matrix. The value of the clustering criterion for this structure is 153.8.

Figure 10 represents the optimised DSM for the alternator problem with
a clustering criterion value of 117.8, corresponding to a reduction of



16

approximately 23%. Without further analysis, it is difficult to clearly
identify any significant component groupings within the optimised DSM.
The MSI function is applied and the resulting MSM is shown in Figure 11.

Figure 10. Optimised alternator DSM.

Figure 11. Alternator MSM.



IDENTIFYING COMPONENT MODULES 17

Again the results are normalised and are based on the application of
Equation 4. It is apparent from Figure 11 that there are a number of strong
module groupings and hierarchical levels within the artefact.

Table 4a catalogues all available modules within the structure at the
differing module strengths highlighted by the MSM. Such modularity is not
immediately evident from the dependencies displayed within the optimised
DSM - Figure 10.

Table 4. Module Catalogue for Alternator.

Modular Strength Module Components
1.0 M1 Lower Cover, Bearing 1

M2 Upper Cover, Big Bolt
M3 Small Bolt, Washer 1

0.9

M4 Small Bolt, Lower Cover
M5 Components within M3 and M4

M6 Rotor Coil, Shaft
M7 Shaft, Fan

0.7

M8 V Belt Socket, Upper Cover
0.6 M9 Components within M1 and M5

M10 Components within M1 and Separator
M11 Components within M6, Separator and Bearing

2

0.5

M12 Components within M6, M7, Washer 2, Nut and
V Belt Socket

M13 Components within M2 and M8

M14 Components within M9 and Separator
M15 Components within M11, M12 and Bearing 1

0.4

M16 Components within M11, M12 and Upper Cover
0.3 M17 All

As with the Climate Control case the designer can utilise this module
catalogue and the MSM to identify a number of differing modular
configurations within the product structure.

The cases presented cover the ‘structural’ viewpoint of design i.e. parts
and components. However, the design activity involves the evolution of
more abstract knowledge, from viewpoints such as function and working
principle (means), into this physical structure. Andreasen’s Domain Theory
(Andreasen 1995 and 1996), Erens’ Product Model (Erens, 1995) and
Zhang’s Multi-Viewpoint Evolutionary Approach (Zhang, 1998) all provide
examples of the differing ‘views’ that can be taken of a design activity and
how ‘mapping’ between these supports the evolution of the design.
Therefore, a structuring principle that supports the activity of design is
required to define structures within each viewpoint and depict the
interactions between these viewpoints. The approach and system are being



18

developed to support new design. As such the system can be applied to
design viewpoints other than structural, i.e. functional, and working
principles (means). Further ‘between viewpoint’ mapping mechanisms are
currently under investigation to allow the principles of modularity to be
applied throughout the evolution of a new design.

Similarly, the system currently represents dependencies for a single
‘perspective’ of any viewpoint such as the physical relationships of
components. Work is underway to extend the functionality to enable the
representation of multiple perspectives within a single matrix, for example,
the representation of dependencies from energy, material, and information
perspectives. This functionality provides the means to simultaneously
consider more than one perspective in the determination of inherent
hierarchical modularity.

7 Conclusions

A generic system for representing the component structure and inter-
component dependencies for design artefacts has been presented. The
system evaluates a clustering criterion using the dependencies for any given
structure of components. The system also incorporates a genetic algorithm
to optimise the clustering objective through the re-ordering of the
components.

A ‘Module Strength Indicator’ (MSI) was derived based on the criteria
for an optimal modular structure, which is defined as the maximisation of
internal dependencies and the minimisation of external dependencies. The
application of the MSI to the DSM resulted with a ‘Modular Structure
Matrix’ (MSM), which represents inherent hierarchical modularity within
the product structure.

The system’s functionality was demonstrated through two case studies
and illustrated the ability to facilitate the identification of near-optimal
component modules without the need for any other domain or artefact
specific knowledge. The results of both case studies identified similar
module configurations as those defined in the original publications. Minor
differences between modules identified were due to the application of
domain specific knowledge by the authors of the original research. Inclusion
of this knowledge within the original matrices would have influenced the
results accordingly.

Another significant contribution of this approach is the identification of
inherent modular hierarchy within the product structure, which was not
evident from the module identification/definition results from previous case
study work.



IDENTIFYING COMPONENT MODULES 19

Acknowledgements

The authors gratefully acknowledge the support given by the Engineering
and Physical Science Research Council who provided the grant
RES/4741/0929 and postgraduate studentship no.98319349.

References

Andreasen, M.M., A. Duffy, and N.H. Mortensen. Relation Types in Machine Systems. in
WDK Workshop on Product Structuring. 1995. Delft University of Technology, Delft,
The Netherlands.

Andreasen, M.M., C.T. Hansen, and N.H. Mortensen. The Structuring of Products and
Product Programmes. in 2nd WDK Workshop on Product Structuring. 1996. Delft
University of Technology, Delft, The Netherlands.

Blackenfelt, M.: 2001, Modularisation by relational matrices – a method for consideration of
strategic and functional aspects, in Design for Configuration – a debate based on the 5th

WDK Workshop on Product Structuring, Riitahuhta, A. and Pulkkinen, A (eds), 134-152,
Springer.

Coates, G., Duffy, A.H.B., Hills, W. and Whitfield, R.I.: 2000, A Generic Coordination
Approach Applied to a Manufacturing Environment, Journal of Materials Processing
Technology, 107:404-411.

Davis, L.: 1985, Job Shop Scheduling and Genetic Algorithms, Proceedings of the First
International Conference on Genetic Algorithms and their Applications, Lawrence
Erlbaum Associates, Hillsdale, NJ, USA, pp. 136-140.

Elgard P. and Miller, T. D.: 1998, Designing product families, Design for Integration in
Manufacturing in Proceedings of the13th IPS Research Seminar, Aalborg University,
Fugsloe.

Eppinger, S.D., Whitney, D.E., Smith, R.P. and Gebala, D.A.: 1994, A model-based method
for organizing tasks in product development, Research in Engineering Design, 6:1-13.

Erens, F. and Vershulst, K.: Managing System Design. in WDK Workshop on Product
Structuring. 1995. Delft University of Technology, Delft, The Netherlands.

Erens, F. and Vershulst, K.: 1996, Architectures for product families, in 2nd WDK Workshop
on Product Structuring, Delft University of Technology, Delft, The Netherlands.

Gershenson, J. K., Jagannath Prasad, G. and Allamneni, S.: 1999, Modular product design: a
life-cycle View, Journal of Integrated Design and Process Science, 3(4).

Glover, F. and Laguna, M.: 1993, Tabu search, in Modern Heuristic Techniques for
Combinatorial Problems, Reeves CR ed. Blackwell Scientific Publications, Oxford, UK,
pp. 70-150.

Goldberg, D.E. and Lingle, R.: 1985, Alleles, Loci and the Travelling Salesman Problem,
Proceedings of the First International Conference on Genetic Algorithms and Their
Applications, Lawrence Erlbaum Associates, Hillsdale, NJ, USA, pp. 154-159.

Goldberg, D.E.: 1989a, Genetic Algorithms in Search, Optimisation and Machine Learning,
Addison-Wesley, Massachusetts, USA.

Goldberg, D.E.: 1989b, Sizing populations for serial and parallel Genetic Algorithms,
Proceedings of the Third International Conference on Genetic Algorithms, Morgan
Kaufmann Publishers, CA, USA, pp. 70-79.

Gonzalz-Zugasti, J.P., and Otto, K.N.: 2000, Modular platform based product family design,
in Proceedings of the Design Engineering Technical Conferences and Computers and
Information in Engineering Conference, ASME.



20

Greffenstette, J.J., Gopal, R., Rosmaita, B. and VanGucht, D.: 1985, Genetic Algorithms for
the Travelling Salesman Problem, Proceedings of the First International Conference on
Genetic Algorithms and Their Applications, Lawrence Erlbaum Associates, Hillsdale, NJ,
USA, pp. 160-168.

Gu, P., Hashemian, M. and Sosale, S.: 1997, An integrated modular design methodology for
life-cycle engineering, Manufacturing Technology CIRP Annals, 46(I), 71-74.

Holland, J.H.: 1962, Outline for a Logical Theory of Adaptive Systems, Joint Association of
Computing Machinery, 9:297-314.

Huang, C. and Kusiak, A.: 1998, Modularity in design of products and systems, in
Transactions on Systems, Man and Cybernetics Part A – systems and humans, 28(1),
IEEE.

Järventausta, S. and Pulkkinen, A.: 2001, Enhancing product modularisation with multiple
views of decomposition and clustering, in Design for Configuration – a debate based on
the 5th WDK Workshop on Product Structuring, Riitahuhta, A. and Pulkkinen, A (eds),
153-168, Springer.

Jiao, J. and Tseng, M. M.: 1999, A methodology for developing product family architecture
for mass customisation, journal of intelligent manufacturing, 12, 3-20, Kluwer Academic
Publishers.

Kirkpatrick, S., Gelatt, C.D. and Vecchi, M.P.: 1983, Optimisation by simulated annealing,
Science, 220(4598):671-680.

Kusiak, A. and Park, K. 1990, Concurrent Engineering: Decomposition and Scheduling of
Design Activities, International Journal of Production Research, 28(10):1883-1900.

Kusiak, A. and Huang, C.: 1996, Development of modular products, IEEE Transactions on
Components, Packaging and Manufacturing Technology, Part A, 19(4), December.
Minsk ML (1990) “ Process models for cultural integration”, Journal of Culture,
11(4):49–58.

Miller, T.D. and Elgard P.: 1998, Defining modules, modularity and modularisation, Design
for Integration in Manufacturing, Proceedings of the 13th IPS Research Seminar,
Fugsloe, Aalborg University.

Miller, T.D.: 1999, Modular engineering of production plants, International Conference on
Engineering Design, Munich.

Muffato, M.: 1999, Introducing a platform strategy in product development, in International
Journal of Production Economics, 60-61, 145-153, Elsevier Science.

Murata, T. and Ishibuchi, H.: 1994, Performance evaluation of Genetic Algorithms for flow
shop scheduling problems, Proceedings of the First IEEE Conference on Evolutionary
Computation, 2:812-817.

O’Grady, P. and Liang, W.: 1998, An object oriented approach to design with modules,
Computer Integrated Manufacturing Systems, 11(4), 267-283, Elsevier Science Ltd.

Oliver I.M., Smith, C.J. and Holland J.R.C.: 1987, A study of permutation crossovers on the
Travelling Salesman Problem, Proceedings of the Second International Conference on
Genetic Algorithms and their Applications, pp. 225-230.

Otto, K.: 2001, A process for modularising product families, in Proceedings of the
International Conference on Engineering Design, August 21-23.

Pimmler, T.U. and Eppinger, S.D.: 1994, Integration analysis of product decompositions,
Proceedings of the ASME Sixth International Conference on Design

Theory and Methodology, Minneapolis, MN, Sept., 1994. Also, M.I.T. Sloan School of
Management, Cambridge, MA, Working Paper no. 3690-94-MS, May 1994.

Salheih, S. M. and Kamrani, A. K.: 1999, Macro level product development using design for
modularity, Robotics and Computer Integrated-Manufacturing, 15, 319-329, Elsevier
Science Ltd.



IDENTIFYING COMPONENT MODULES 21

Smith, J.S. and Duffy A.H.B.: 2001a, Modularity in support of design for re-use, in the
International Conference of Engineering Design, ICED, Glasgow, August 21-23.

Smith, J.S. and Duffy A.H.B.: 2001b, Product structuring for design re-use, in Design for
Configuration – a debate based on the 5th WDK Workshop on Product Structuring,
Riitahuhta, A. and Pulkkinen, A (eds), 83-100, Springer.

Sosale, S., Hashemian, M. and Gu, P.: 1997, Product modularisation for re-use and recycling,
in Concurrent Product Design and Environmentally Conscious Manufacturing, DE 94,
ASME.

Starkweather, T., McDaniel, S., Mathias, K., Whitley, D. and Whitley, C.: 1991, A
comparison of genetic sequencing operators, Proceedings of the Fourth International
Conference on Genetic Algorithms, San Mateo, CA, USA, pp. 69-76.

Steward, D.V.: 1981, The design structure system: a method for managing the design of
complex systems, IEEE Trans. Engineering Management, 28:71-74.

Suh, N.P.: 1990, The principles of design, Oxford U.K., Oxford University Press.
Ulrich, K. and Tung, K.: 1991, Fundamentals of product modularity, in Issues in

Design/Manufacture Integration, Sharon, A. (ed), DE 39, 73-79, ASME.
Syswerda, G.: 1991, Scheduling optimisation using Genetic Algorithms, in Handbook of

Genetic Algorithms, L. Davis ed. Van Nostrand Reinhold, pp. 332-349.
Todd, D.: 1997, Multiple Criteria Genetic Algorithms in Engineering Design and Operation,

Ph.D. Thesis, Engineering Design Centre, University of Newcastle upon Tyne, UK.
Whitfield, R.I., Duffy, A.H.B., Coates, G. and Hills W.: 2001a, Efficient process

optimisation, submitted to Journal of Concurrent Engineering Research and
Applications.

Whitfield, R.I., 2001b, “Effective Combinatorial Optimisation”, CAD Centre internal report,
CADC/01-06/R/03, DMEM, University of Strathclyde.

Whitley, D., Starkweather, T. and Fuquay, D.: 1989, Scheduling problems and the Travelling
Salesman: The Genetic Edge Recombination Operator, Proceedings of the Third
International Conference on Genetic Algorithms, Morgan Kaufmann, pp.133-140.

Zamirowski, E.J. and Otto, K.N.: 1999, Identifying product portfolio architecture modularity
using function and variety heuristics, in Proceedings of the 11th International Conference
on Design Theory and Methodology, Design Engineering Technical Conference, ASME.

Zhang, Y.: Computer-based modelling and management for current working knowledge
evolution support, Doctoral Thesis, DMEM, University of Strathclyde, UK, May, 1998.


