10 research outputs found

    a tool to disentangle overlapping core-excited states

    Get PDF
    We have measured resonant-Auger decay following Cl 1s−1 excitations in HCl and CH3Cl molecules, and extracted the pseudo-cross sections of different Cl 2p−2 final states. These cross sections show clear evidence of shake processes as well as contributions of electronic state-lifetime interference (ELI). To describe the spectra we developed a fit approach that takes into account ELI contributions and ultrafast nuclear dynamics in dissociative core-excited states. Using this approach we utilized the ELI contributions to obtain the intensity ratios of the overlapping states Cl 1s−14pπ/1s−14pσ in HCl and Cl 1s−14pe/1s−14pa1 in CH3Cl. The experimental value for HCl is compared with theoretical results showing satisfactory agreement

    Interference effects in photoelectron asymmetry parameter (\u3b2) trends of C 2s-1 states of ethyne, ethene and ethane

    No full text
    Photoelectron asymmetry parameters (\u3b2) of the gerade and ungerade C 2s-1 derived states of ethyne, ethene and ethane as a function of photon energy have been calculated and experimentally measured, to extend the search of interference effects on angular distributions to polyatomic molecules. The calculations cover the electron energy range from 0 to 1100 eV while the experimental measurements cover the electron energy range from 30 to 220 eV. Clear oscillations are interpreted in terms of interference of the photoelectron wave emitted from the two possible C 2s centres, or equivalently from the gerade and ungerade states associated with them. This is a microscopic analog of Young's double-slit experiment. The effect is however quite small and requires very high experimental accuracy to be detected. It is best evidenced in the behaviour of \u3b2 difference between the two channels. The connection between \u3b2 trends and structural parameters shows the expected inverse correlation between oscillation period and distance between the carbon atoms, but do not simply parallel the analogous behaviour found in cross sections

    Dissociation of OCS by high energy highly charged ion impact

    No full text
    Various dissociation channels of OCSq+ (where q = 2 to 4), formed in the interaction of 5 MeV u-1 Si12+ ion beam with neutral OCS, have been studied using recoil–ion momentum spectroscopy. The concerted and/or sequential nature of dissociation is inferred from the shape and slope of the coincidence islands in the 2D coincidence map. It is observed that the C+ + S+ + O channel results from concerted as well as sequential decay of OCS2+. However the other channels originate purely from the concerted process in which the two terminal fragments (oxygen and sulphur) fly back to back and the central carbon fragment is left with negligible momentum. The kinetic energy release (KER) distributions for all the fragmentation channels arising from the dissociation of OCSq+ (where q = 2 to 4) have been measured and compared with the available data in the literature. It is observed that the KER values for complete Coulomb fragmentation channels are much smaller than those of incomplete Coulomb fragmentation cases and the KER increases with the increasing charge states of the parent molecular ions. From the momentum correlation map, we estimated the geometry of the precursor molecular ion undergoing three–body dissociation and inferred that bent dissociative states are involved in most of the fragmentation channels of OCSq+

    Isomer-dependent fragmentation dynamics of inner-shell photoionized difluoroiodobenzene.

    No full text
    The fragmentation dynamics of 2,6- and 3,5-difluoroiodobenzene after iodine 4d inner-shell photoionization with soft X-rays are studied using coincident electron and ion momentum imaging. By analyzing the momentum correlation between iodine and fluorine cations in three-fold ion coincidence events, we can distinguish the two isomers experimentally. Classical Coulomb explosion simulations are in overall agreement with the experimentally determined fragment ion kinetic energies and momentum correlations and point toward different fragmentation mechanisms and time scales. While most three-body fragmentation channels show clear evidence for sequential fragmentation on a time scale larger than the rotational period of the fragments, the breakup into iodine and fluorine cations and a third charged co-fragment appears to occur within several hundred femtoseconds

    Isomer-dependent fragmentation dynamics of inner-shell photoionized difluoroiodobenzene

    No full text
    The fragmentation dynamics of 2,6- and 3,5-difluoroiodobenzene after iodine 4d inner-shell photoionization with soft X-rays are studied using coincident electron and ion momentum imaging. By analyzing the momentum correlation between iodine and fluorine cations in three-fold ion coincidence events, we can distinguish the two isomers experimentally. Classical Coulomb explosion simulations are in overall agreement with the experimentally determined fragment ion kinetic energies and momentum correlations and point toward different fragmentation mechanisms and time scales. While most three-body fragmentation channels show clear evidence for sequential fragmentation on a time scale larger than the rotational period of the fragments, the breakup into iodine and fluorine cations and a third charged co-fragment appears to occur within several hundred femtoseconds

    Angle-dependent strong-field ionization and fragmentation of carbon dioxide measured using rotational wave packets

    Get PDF
    In this work, we experimentally study the angle-dependent single ionization of carbon dioxide (CO2) by linearly and circularly polarized pulses. The angle dependence of the ionization probability by linearly polarized pulses extracted from time-domain measurements on an impulsively excited rotational wave packet is compared with data obtained from a direct angle-scan measurement. The results from the measurement with linear and circular polarization are consistent with the adiabatic ionization approximation. We extend the time-domain method to extract the dependence of the asymptotic momentum distribution of fragment ions on the orientation of the molecular axis, and apply it to investigate dissociative double ionization of CO2. We show that such measurements can directly test the validity of the axial recoil approximation

    Recoil-induced ultrafast molecular rotation probed by dynamical rotational Doppler effect

    No full text
    Текст статьи не публикуется в открытом доступе в соответствии с политикой журнала.Observing and controlling molecular motion and in particular rotation are fundamental topics in physics and chemistry. To initiate ultrafast rotation, one needs a way to transfer a large angular momentum to the molecule. As a showcase, this was performed by hard X-ray C1s ionization of carbon monoxide accompanied by spinning up the molecule via the recoil “kick” of the emitted fast photoelectron. To visualize this molecular motion, we use the dynamical rotational Doppler effect and an X-ray “pump-probe” device offered by nature itself: the recoil-induced ultrafast rotation is probed by subsequent Auger electron emission. The time information in our experiment originates from the natural delay between the C1s photoionization initiating the rotation and the ejection of the Auger electron. From a more general point of view, time-resolved measurements can be performed in two ways: either to vary the “delay” time as in conventional time-resolved pump-probe spectroscopy and use the dynamics given by the system, or to keep constant delay time and manipulate the dynamics. Since in our experiment we cannot change the delay time given by the core-hole lifetime τ, we use the second option and control the rotational speed by changing the kinetic energy of the photoelectron. The recoil-induced rotational dynamics controlled in such a way is observed as a photon energy-dependent asymmetry of the Auger line shape, in full agreement with theory. This asymmetry is explained by a significant change of the molecular orientation during the core-hole lifetime, which is comparable with the rotational period

    Isomer-dependent fragmentation dynamics of inner-shell photoionized difluoroiodobenzene

    No full text
    The fragmentation dynamics of 2,6- and 3,5-difluoroiodobenzene after iodine 4d inner-shell photoionization with soft X-rays are studied using coincident electron and ion momentum imaging. By analyzing the momentum correlation between iodine and fluorine cations in three-fold ion coincidence events, we can distinguish the two isomers experimentally. Classical Coulomb explosion simulations are in overall agreement with the experimentally determined fragment ion kinetic energies and momentum correlations and point toward different fragmentation mechanisms and time scales. While most three-body fragmentation channels show clear evidence for sequential fragmentation on a time scale larger than the rotational period of the fragments, the breakup into iodine and fluorine cations and a third charged co-fragment appears to occur within several hundred femtoseconds
    corecore