23 research outputs found

    Evidence-based hydro- and balneotherapy in Hungary-a systematic review and meta-analysis

    Get PDF
    Balneotherapy is appreciated as a traditional treatment modality in medicine. Hungary is rich in thermal mineral waters. Balneotherapy has been in extensive use for centuries and its effects have been studied in detail. Here, we present a systematic review and meta-analysis of clinical trials conducted with Hungarian thermal mineral waters, the findings of which have been published by Hungarian authors in English. The 122 studies identified in different databases include 18 clinical trials. Five of these evaluated the effect of hydro- and balneotherapy on chronic low back pain, four on osteoarthritis of the knee, and two on osteoarthritis of the hand. One of the remaining seven trials evaluated balneotherapy in chronic inflammatory pelvic diseases, while six studies explored its effect on various laboratory parameters. Out of the 18 studies, 9 met the predefined criteria for meta-analysis. The results confirmed the beneficial effect of balneotherapy on pain with weight bearing and at rest in patients with degenerative joint and spinal diseases. A similar effect has been found in chronic pelvic inflammatory disease. The review also revealed that balneotherapy has some beneficial effects on antioxidant status, and on metabolic and inflammatory parameters. Based on the results, we conclude that balneotherapy with Hungarian thermal-mineral waters is an effective remedy for lower back pain, as well as for knee and hand osteoarthritis. © 2013 The Author(s)

    Enhancing surface production of negative ions using nitrogen doped diamond in a deuterium plasma

    Get PDF
    The production of negative ions is of significant interest for applications including mass spectrometry, particle acceleration, material surface processing, and neutral beam injection for magnetic confinement fusion. Methods to improve the efficiency of the surface production of negative ions, without the use of low work function metals, are of interest for mitigating the complex engineering challenges these materials introduce. In this study we investigate the production of negative ions by doping diamond with nitrogen. Negatively biased (−20-20 V or −130-130 V), nitrogen doped micro-crystalline diamond films are introduced to a low pressure deuterium plasma (helicon source operated in capacitive mode, 2 Pa, 26 W) and negative ion energy distribution functions (NIEDFs) are measured via mass spectrometry with respect to the surface temperature (30∘^{\circ}C to 750∘^{\circ}C) and dopant concentration. The results suggest that nitrogen doping has little influence on the yield when the sample is biased at −130-130 V, but when a relatively small bias voltage of −20-20 V is applied the yield is increased by a factor of 2 above that of un-doped diamond when its temperature reaches 550∘^{\circ}C. The doping of diamond with nitrogen is a new method for controlling the surface production of negative ions, which continues to be of significant interest for a wide variety of practical applications

    Investigations on Cs-free alternative materials for negative hydrogen information

    No full text
    corecore