55 research outputs found

    Future Direction of Biochar: Uncertain or Certain Future?

    Get PDF
    Kurt Spokas - Research Soil Scientist at the USDA-ARS in St. Paul, MN.Ope

    Biochar Degradation in Soils: The Overlooked Processes

    Get PDF
    Kurt Spokas - Research Soil Scientist at the USDA-ARS in St. Paul, MN. Recent data collected from both artificially and naturally weathered biochars suggest that a potential significant pathway of biochar disappearance is through physical breakdown of the biochar structure. Through scanning electron microscopy (SEM), we characterized this physical weathering which increased the spacing between the graphite sheets due to the expansion accompanying water sorption and freeze-thaw, as well as desiccation and rewetting. As these sheets expand (exfoliate) this further accelerates physical break-down of the biochar. The micro- and nano-scale biochar particles resulting from this physical disintegration are still carbon-rich particles with no detectable alteration in the O:C ratio of the carbon structure, but are now easily suspended and moved by infiltration. There is a need to understand how to produce a biochar that is resistant to physical degradation in order to maximize the long-term C-sequestration potential of biochar in the soil system.Ope

    Biochar: The field experience

    Get PDF
    Kurt Spokas - Research Soil Scientist at the USDA-ARS in St. Paul, MN. Soilless substrates are primarily used in the production of containerized greenhouse and nursery crops, with sphagnum peat moss being a primary constituent of most substrates. We are examining biochars for several horticultural applications, including as peat moss replacements. Biochar was prepared from pelletized wheat straw at our laboratory, while biochar produced from recycled wood pallets was obtained from Chip Energy, Goodfield, IL. Increasing levels of biochars (5, 10, and 15% v/v) had variable effects on substrate physical properties (pH, bulk density, air porosity, container capacity, and total porosity). Greenhouse experiments were conducted using tomato (Solanum lycopersicum L.) and marigold (Tagetes erecta L.) plants grown in 3.0-L pots. No differences were found in tomato dry weights after 4 weeks growth, but plant heights were greater in several biochar treatments. Marigold plants grown in 10% pelletized straw had greater dry weights than controls, and plants heights were greater than the control in all but the 5% wood biochar. These results indicate that both pelletized biochars would be suitable replacements for peat in soilless substrates.Ope

    First-order decay models to describe soil C-CO2 Loss after rotary tillage

    Get PDF
    Para entendimento do impacto do preparo do solo sobre as emissões de CO2 desenvolvemos e aplicamos dois modelos conceituais que são capazes de prever a emissão de CO2 do solo após seu preparo em função da emissão da parcela sem distúrbio, acrescida de uma correção devido ao preparo. Os modelos assumem que o carbono presente na matéria orgânica lábil segue uma cinética de decaimento de primeira ordem, dada pela seguinte equação: dCsoil (t) / dt = -k Csoil (t), e que a emissão de C-CO2 é proporcional a taxa de decaimento do C no solo, onde Csolo(t) é a quantidade de carbono lábil disponível no tempo (t) e k é a constante de decaimento (tempo-1). Duas suposições foram testadas para determinação das emissões após o preparo do solo (Fp): a constante de decaimento do carbono lábil do solo (k) antes e após o preparo é igual (Modelo 1) ou desigual (Modelo 2). Conseqüentemente, a relação entre os fluxos de C das parcelas sem distúrbio (F SD) e onde o preparo do solo foi conduzido (F P) são dadas por: F P = F SD + a1 e-a2t (modelo 1) e F P = a3 F SD e-a4t (modelo 2), onde t é o tempo após o preparo. Fluxos de CO2 previstos e observados relevam um bom ajuste dos resultados com coeficiente de determinação (R²) tão alto quanto 0,91. O modelo 2 produz um ajuste ligeiramente superior quando comparado com o outro modelo. A velocidade das pás da enxada rotativa foi relacionada a um aumento na quantidade de carbono lábil e nas modificações do tempo de residência médio do carbono lábil do solo após preparo. A vantagem desta metodologia é que a variabilidade temporal das emissões induzidas pelo preparo do solo pode ser descrita a partir de uma função analítica simples, que inclui a emissão da parcela sem distúrbio e um termo exponencial modulado por parâmetros dependentes do preparo e de condições ambientais onde o experimento foi conduzido.To further understand the impact of tillage on CO2 emission, the applicability of two conceptual models was tested, which describe the CO2 emission after tillage as a function of the non-tilled emission plus a correction due to the tillage disturbance. Models assume that C in readily decomposable organic matter follows a first-order reaction kinetics equation as: dCsoil (t) / dt = -k Csoil (t), and that soil C-CO2 emission is proportional to the C decay rate in soil, where Csoil(t) is the available labile soil C (g m-2) at any time (t) and k is the decay constant (time-1). Two possible assumptions were tested to determine the tilled (F T) fluxes: the decay constants (k) of labile soil C before and after tillage are different (Model 1) or not (Model 2). Accordingly, C flux relationships between non-tilled (F NT) and tilled (F T) conditions are given by: F T = F NT + a1 e-a2t (model 1) and F T = a3 F NT e-a4t (model 2), where t is time after tillage. Predicted and observed CO2 fluxes presented good agreement based on the coefficient of determination (R² = 0.91). Model comparison revealed a slightly improved statistical fit of model 2, where all C pools are assigned with the same k constant. Rotary speed was related to increases in the amount of labile C available and to changes of the mean resident labile C pool available after tillage. This approach allows describing the temporal variability of tillage-induced emissions by a simple analytical function, including non-tilled emission plus an exponential term modulated by tillage and environmentally dependent parameters
    corecore