694 research outputs found

    Dynamic Characteristics of Neuron Models and Active Areas in Potential Functions

    Get PDF
    AbstractWe present a simple neuron model that shows a rich property in spite of the simple structure derived from a simplification of the Hindmarsh-Rose, the Morris-Lecar, and the Hodgkin-Huxley models. The model is a typical example whose characteristics can be discussed through the concept of potential with active areas. A potential function is able to provide a global landscape for dynamics of a model, and the dynamics is explained in connection with the disposition of the active areas on the potential, and hence we are able to discuss the global dynamic behaviors and the common properties among these realistic models

    Variability in organ-specific EGFR mutational spectra in tumour epithelium and stroma may be the biological basis for differential responses to tyrosine kinase inhibitors

    Get PDF
    Organ-specific differences in epidermal growth factor receptor (EGFR) mutational spectra and frequencies were found in lung cancer and sporadic and BRCA1/2-related breast cancers. Additionally, we found a high frequency of EGFR mutations in the tumour stroma of these invasive breast carcinomas. Those organ-specific mutational spectra and potential targets in the cancer-associated stroma might influence the efficacy of TKI therapy

    Discovery and cardioprotective effects of the first non-peptide agonists of the G protein-coupled prokineticin receptor-1

    Get PDF
    Prokineticins are angiogenic hormones that activate two G protein-coupled receptors: PKR1 and PKR2. PKR1 has emerged as a critical mediator of cardiovascular homeostasis and cardioprotection. Identification of non-peptide PKR1 agonists that contribute to myocardial repair and collateral vessel growth hold promises for treatment of heart diseases. Through a combination of in silico studies, medicinal chemistry, and pharmacological profiling approaches, we designed, synthesized, and characterized the first PKR1 agonists, demonstrating their cardioprotective activity against myocardial infarction (MI) in mice. Based on high throughput docking protocol, 250,000 compounds were computationally screened for putative PKR1 agonistic activity, using a homology model, and 10 virtual hits were pharmacologically evaluated. One hit internalizes PKR1, increases calcium release and activates ERK and Akt kinases. Among the 30 derivatives of the hit compound, the most potent derivative, IS20, was confirmed for its selectivity and specificity through genetic gain- and loss-of-function of PKR1. Importantly, IS20 prevented cardiac lesion formation and improved cardiac function after MI in mice, promoting proliferation of cardiac progenitor cells and neovasculogenesis. The preclinical investigation of the first PKR1 agonists provides a novel approach to promote cardiac neovasculogenesis after MI

    A novel mutation in the tyrosine kinase domain of ERBB2 in hepatocellular carcinoma

    Get PDF
    BACKGROUND: Several studies showed that gain-of-function somatic mutations affecting the catalytic domain of EGFR in non-small cell lung carcinomas were associated with response to gefitinib and erlotinib, both EGFR-tyrosine kinase inhibitors. In addition, 4% of non-small cell lung carcinomas were shown to have ERBB2 mutations in the kinase domain. In our study, we sought to determine if similar respective gain-of-function EGFR and ERBB2 mutations were present in hepatoma and/or biliary cancers. METHODS: We extracted genomic DNA from 40 hepatoma (18) and biliary cancers (22) samples, and 44 adenocarcinomas of the lung, this latter as a positive control for mutation detection. We subjected those samples to PCR-based semi-automated double stranded nucleotide sequencing targeting exons 18–21 of EGFR and ERBB2. All samples were tested against matched normal DNA. RESULTS: We found 11% of hepatoma, but no biliary cancers, harbored a novel ERBB2 H878Y mutation in the activating domain. CONCLUSION: These newly described mutations may play a role in predicting response to EGFR-targeted therapy in hepatoma and their role should be explored in prospective studies

    High-throughput genomic technology in research and clinical management of breast cancer. Molecular signatures of progression from benign epithelium to metastatic breast cancer

    Get PDF
    It is generally accepted that early detection of breast cancer has great impact on patient survival, emphasizing the importance of early diagnosis. In a widely recognized model of breast cancer development, tumor cells progress through chronological and well defined stages. However, the molecular basis of disease progression in breast cancer remains poorly understood. High-throughput molecular profiling techniques are excellent tools for the study of complex molecular alterations. By accurately mapping changes in the genome and subsequent biological/molecular pathways, the chances of finding potential novel treatment targets as well as intervention strategies are enhanced, and ultimately lives can be saved. This review provides a brief summary of recent progress in identifying molecular markers for invasiveness in early breast lesions

    Sparse and Constrained Stochastic Predictive Control for Networked Systems

    Full text link
    This article presents a novel class of control policies for networked control of Lyapunov-stable linear systems with bounded inputs. The control channel is assumed to have i.i.d. Bernoulli packet dropouts and the system is assumed to be affected by additive stochastic noise. Our proposed class of policies is affine in the past dropouts and saturated values of the past disturbances. We further consider a regularization term in a quadratic performance index to promote sparsity in control. We demonstrate how to augment the underlying optimization problem with a constant negative drift constraint to ensure mean-square boundedness of the closed-loop states, yielding a convex quadratic program to be solved periodically online. The states of the closed-loop plant under the receding horizon implementation of the proposed class of policies are mean square bounded for any positive bound on the control and any non-zero probability of successful transmission

    Involvement of promoter methylation in the regulation of Pregnane X receptor in colon cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pregnane X receptor (PXR) is a key transcription factor that regulates drug metabolizing enzymes such as cytochrome P450 (CYP) 3A4, and plays important roles in intestinal first-pass metabolism. Although there is a large inter-individual heterogeneity with intestinal CYP3A4 expression and activity, the mechanism driving these differences is not sufficiently explained by genetic variability of PXR or CYP3A4. We examined whether epigenetic mechanisms are involved in the regulation of PXR/CYP3A4 pathways in colon cancer cells.</p> <p>Methods</p> <p>mRNA levels of PXR, CYP3A4 and vitamin D receptor (VDR) were evaluated by quantitative real-time PCR on 6 colon cancer cell lines (Caco-2, HT29, HCT116, SW48, LS180, and LoVo). DNA methylation status was also examined by bisulfite sequencing of the 6 cell lines and 18 colorectal cancer tissue samples. DNA methylation was reversed by the treatment of these cell lines with 5-aza-2'-deoxycytidine (5-aza-dC).</p> <p>Results</p> <p>The 6 colon cancer cell lines were classified into two groups (high or low expression cells) based on the basal level of PXR/CYP3A4 mRNA. DNA methylation of the CpG-rich sequence of the <it>PXR </it>promoter was more densely detected in the low expression cells (Caco-2, HT29, HCT116, and SW48) than in the high expression cells (LS180 and LoVo). This methylation was reversed by treatment with 5-aza-dC, in association with re-expression of PXR and CYP3A4 mRNA, but not VDR mRNA. Therefore, PXR transcription was silenced by promoter methylation in the low expression cells, which most likely led to downregulation of CYP3A4 transactivation. Moreover, a lower level of <it>PXR </it>promoter methylation was observed in colorectal cancer tissues compared with adjacent normal mucosa, suggesting upregulation of the PXR/CYP3A4 mRNAs during carcinogenesis.</p> <p>Conclusions</p> <p><it>PXR </it>promoter methylation is involved in the regulation of intestinal PXR and CYP3A4 mRNA expression and might be associated with the inter-individual variability of the drug responses of colon cancer cells.</p

    PTEN transcript variants caused by illegitimate splicing in “aged” blood samples and EBV-transformed cell lines

    Get PDF
    PTEN is one of the most frequently mutated tumor suppressor genes in human cancers. Mutations occur in either heritable or sporadic fashion. Sequencing of cDNA from patients and normal individuals often reveals splicing variants (SVs) of PTEN, some of which are non-mutation related. To investigate whether these SVs were the result of illegitimate splicing (a general decrease of fidelity in splicing site selection in “aged” samples), we tested “aged” blood from individuals who had normal PTEN transcripts in their “fresh” mononuclear cells. Blood from 20 normal individuals was collected and split into two aliquots. Total RNA and DNA were extracted immediately (“fresh”) and 48 h later (“aged”), respectively. Using RT-PCR, subcloning and sequencing, we found seven types of SVs. No mutation was detected in the related intron–exon flanking region in genomic DNA in either “fresh” or “aged” samples. Some of the SVs were also consistently present in both the “fresh” and “aged” EBV-transformed lymphoblastoid cells from six normal individuals. Western blot data indicated that the PTEN protein level (in full length) was not altered in the “fresh” EBV-transformed lymphoblastoid cells with SVs. In conclusion, our data demonstrate that PTEN illegitimate splicing often occurs in “aged” blood and EBV-transformed lymphoblastoid cells. Therefore, it is critical to note the time point of RNA extraction when investigating for PTEN aberrant transcripts. We hope that our data will increase awareness about the sample status, because gene expression data may be potentially flawed from “aged” samples, particularly when dealing with clinical samples

    evaluation of advanced routing strategies with information theoretic complexity measures

    Get PDF
    Based on hierarchy and recursion (shortly, HR), recursive networking has evolved to become a possible architecture for the future Internet. In this paper, we advance the study of HR-based routing by means of the Gershenson-Fernandez information-theoretic framework, which provides four different complexity measures. Then, we introduce a novel and general approach for computing the information associated to a known or estimated routing table. Finally, we present simulation results regarding networks that are characterized by different topologies and routing strategies. In particular, we discuss some interesting facts we observed while comparing HR-based to traditional routing in terms of complexity measures
    • …
    corecore