4 research outputs found

    地震発生帯における深部掘削孔を用いた長期計測

    Get PDF
    Large earthquakes occur frequently in subduction zones. Most earthquakes are generated in the seismogenic zone, a fairly limited area confined to the shallower regions of the subduction plate boundary. To understand the processes of earthquake generation, it is essential to monitor the physical and mechanical properties of the seismogenic zone over long periods. At present, there are no deep borehole observations of the seismogenic zone more than 3km below seafloor, because it has, until now, been impossible to penetrate to such depths below the sea floor. The Integrated Ocean Drilling Program (IODP), scheduled to begin in 2003, plans to drill boreholes beneath the ocean floor using a multiple-drilling platform operation. The IODP riser-quipped drilling ship (Chikyu) enables the emplacement of boreholes up to 0km beneath the ocean floor, and will provide opportunities to conduct long-term deep borehole observations in the seismogenic zone. Long-term borehole observations in the seismogenic zone are expected to require the development of advanced sampling, monitoring, and recording technology. Here, we discuss the scientific objectives, engineering and technical challenges, and experimental design for a deep borehole, long-term deepborehole monitoring system aimed at understanding the processes of earthquake generation in the seismogenic zone of subduction plate boundaries. We focus specifically on the relationships between environmental conditions in the deep subsurface, details of monitoring and recording, and design and implementation of scientific tools and programs

    Data_Sheet_1_TMPRSS2 gene polymorphism common in East Asians confers decreased COVID-19 susceptibility.docx

    No full text
    COVID-19 has a wide range of clinical presentations, and the susceptibility to SARS-CoV-2 infection and the mortality rate also vary by region and ethnicity. Here, we found that rs12329760 in the TMPRSS2 gene, a missense variant common in East Asian populations, contributes to protection against SARS-CoV-2 infection. TMPRSS2 is a protease responsible for SARS-CoV-2 entry and syncytium formation. rs12329760 (c.478G>A, p. V160M) was associated with a reduced risk of moderate symptoms. The enzymatic activity of Met160-TMPRSS2 was lower than that of Val160-TMPRSS2, and thus the viral entry and the syncytium formation of SARS-CoV-2 were impaired. Collectively, these results indicate that the genetic variation in TMPRSS2, which is common in East Asians, is one of the molecular determinants of COVID-19 susceptibility.</p

    Common risk variants in NPHS1 and TNFSF15 are associated with childhood steroid-sensitive nephrotic syndrome

    No full text
    corecore