62 research outputs found
Magnetisation switching in a ferromagnetic Heisenberg nanoparticle with uniaxial anisotropy: A Monte Carlo investigation
We investigate the thermal activated magnetisation reversal in a single
ferromagnetic nanoparticle with uniaxial anisotropy using Monte Carlo
simulations. The aim of this work is to reproduce the reversal magnetisation by
uniform rotation at very low temperature in the high energy barrier hypothesis,
that is to realize the N\'eel-Brown model. For this purpose we have considered
a simple cubic nanoparticle where each site is occupied by a classical
Heisenberg spin. The Hamiltonian is the sum of an exchange interaction term, a
single-ion anisotropy term and a Zeeman interaction term. Our numerical data of
the thermal variation of the switching field are compared to an approximated
expression and previous experimental results on Co nanoparticles
Effect of point-contact transparency on coherent mixing of Josephson and transport supercurrents
The influence of electron reflection on dc Josephson effect in a ballistic
point contact with transport current in the banks is considered theoretically.
The effect of finite transparency on the vortex-like currents near the contact
and at the phase difference which has been predicted recently
\cite{KOSh}, is investigated. We show that at low temperatures even a small
reflection on the contact destroys the mentioned vortex-like current states,
which can be restored by increasing of the temperature.Comment: 6 pages, 8 Figures, Latex Fil
Lifetime of metastable states in resonant tunneling structures
We investigate the transport of electrons through a double-barrier
resonant-tunneling structure in the regime where the current-voltage
characteristics exhibit bistability. In this regime one of the states is
metastable, and the system eventually switches from it to the stable state. We
show that the mean switching time grows exponentially as the voltage across the
device is tuned from the its boundary value into the bistable region. In
samples of small area we find that the logarithm of the lifetime is
proportional to the voltage (measured from its boundary value) to the 3/2
power, while in larger samples the logarithm of the lifetime is linearly
proportional to the voltage.Comment: REVTeX 4, 5 pages, 3 EPS-figure
Josephson effect in point contacts between ''f-wave'' superconductors
A stationary Josephson effect in point contacts between triplet
superconductors is analyzed theoretically for most probable models of the order
parameter in UPt_{3} and Sr_{2}RuO_{4}. The consequence of misorientation of
crystals in superconducting banks on this effect is considered. We show that
different models for the order parameter lead to quite different current-phase
dependences. For certain angles of misorientation a boundary between
superconductors can generate the parallel to surface spontaneous current. In a
number of cases the state with a zero Josephson current and minimum of the free
energy corresponds to a spontaneous phase difference. This phase difference
depends on the misorientation angle and may possess any value. We conclude that
experimental investigations of the current-phase dependences of small junctions
can be used for determination of the order parameter symmetry in the mentioned
above superconductors.Comment: 11 pages, 8 figure
Pinhole calculations of the Josephson effect in 3He-B
We study theoretically the dc Josephson effect between two volumes of
superfluid 3He-B. We first discuss how the calculation of the current-phase
relationships is divided into a mesoscopic and a macroscopic problem. We then
analyze mass and spin currents and the symmetry of weak links. In quantitative
calculations the weak link is assumed to be a pinhole, whose size is small in
comparison to the coherence length. We derive a quasiclassical expression for
the coupling energy of a pinhole, allowing also for scattering in the hole.
Using a selfconsistent order parameter near a wall, we calculate the
current-phase relationships in several cases. In the isotextural case, the
current-phase relations are plotted assuming a constant spin-orbit texture. In
the opposite anisotextural case the texture changes as a function of the phase
difference. For that we have to consider the stiffness of the macroscopic
texture, and we also calculate some surface interaction parameters. We analyze
the experiments by Marchenkov et al. We find that the observed pi states and
bistability hardly can be explained with the isotextural pinhole model, but a
good quantitative agreement is achieved with the anisotextural model.Comment: 20 pages, 21 figures, revtex
The Effect of Surfaces on the Tunneling Density of States of an Anisotropically Paired Superconductor
We present calculations of the tunneling density of states in an
anisotropically paired superconductor for two different sample geometries: a
semi-infinite system with a single specular wall, and a slab of finite
thickness and infinite lateral extent. In both cases we are interested in the
effects of surface pair breaking on the tunneling spectrum. We take the stable
bulk phase to be of symmetry. Our calculations are performed
within two different band structure environments: an isotropic cylindrical
Fermi surface with a bulk order parameter of the form ,
and a nontrivial tight-binding Fermi surface with the order parameter structure
coming from an anti-ferromagnetic spin-fluctuation model. In each case we find
additional structures in the energy spectrum coming from the surface layer.
These structures are sensitive to the orientation of the surface with respect
to the crystal lattice, and have their origins in the detailed form of the
momentum and spatial dependence of the order parameter. By means of tunneling
spectroscopy, one can obtain information on both the anisotropy of the energy
gap, |\Delta(\p)|, as well as on the phase of the order parameter,
\Delta(\p) = |\Delta(\p)|e^{i\varphi(\p)}.Comment: 14 pages of revtex text with 11 compressed and encoded figures. To
appear in J. Low Temp. Phys., December, 199
Josephson Effect between Condensates with Different Internal Structures
A general formula for Josephson current in a wide class of hybrid junctions
between different internal structures is derived on the basis of the Andreev
picture. The formula extends existing formulae and also enables us to analyze
novel B-phase/A-phase/B-phase (BAB) junctions in superfluid helium three
systems, which are accessible to experiments. It is predicted that BAB
junctions will exhibit two types of current-phase relations associated with
different internal symmetries. A ``pseudo-magnetic interface effect'' inherent
in the system is also revealed.Comment: 4 pages, 2 figure
Superconducting fluctuations at low temperature
The effect of fluctuations on the transport and thermodynamic properties of
two-dimensional superconductors in a magnetic field is studied at low
temperature. The fluctuation conductivity is calculated in the framework of the
perturbation theory with the help of usual diagram technique. It is shown that
in the dirty case the Aslamazov-Larkin, Maki-Thomson and Density of States
contributions are of the same order. At extremely low temperature, the total
fluctuation correction to the normal conductivity is negative in the dirty
limit and depends on the external magnetic field logarithmically. In the
non-local clean limit, the Aslamazov-Larkin contribution to conductivity is
evaluated with the aid of the Helfand-Werthamer theory. The longitudinal and
Hall conductivities are found. The fluctuating magnetization is calculated in
the one-loop and two-loop approximations.Comment: 12 pages, 4 figures, submitted to Phys. Rev.
Quasiparticle Interface States in Junctions Involving d-Wave Superconductors
Influence of surface pair breaking, barrier transmission and phase difference
on quasiparticle bound states in junctions with d-wave superconductors is
examined. Based on the quasiclassical theory of superconductivity, an approach
is developed to handle interface bound states. It is shown in SIS' junctions
that low energy bound states get their energies reduced by surface pair
breaking, which can be taken into account by introducing an effective order
parameter for each superconductor at the junction barrier. More interestingly,
for the interface bound states near the continuous spectrum the effect of
surface pair breaking may result in a splitting of the bound states. In the
tunneling limit this can lead to a square root dependence of a nonequilibrium
Josephson current on the barrier transmision, which means an enhancement as
compared to the conventional critical current linear in the transmission.
Reduced broadening of bound states in NIS junctions due to surface pair
breaking is found.Comment: 27 pages, Latex fil
Two-scale localization in disordered wires in a magnetic field
Calculating the density-density correlation function for disordered wires, we
study localization properties of wave functions in a magnetic field. The
supersymmetry technique combined with the transfer matrix method is used. It is
demonstrated that at arbitrarily weak magnetic field the far tail of the wave
functions decays with the length , where and are the localization lengths in the absence of a
magnetic field and in a strong magnetic field, respectively. At shorter
distances, the decay of the wave functions is characterized by the length
. Increasing the magnetic field broadens the region of the decay
with the length , leading finally to the decay with at all distances. In other words, the crossover between the orthogonal
and unitary ensembles in disordered wires is characterized by two localization
lengths. This peculiar behavior must result in two different temperature
regimes in the hopping conductivity with the boundary between them depending on
the magnetic field.Comment: 4 page
- …