We study theoretically the dc Josephson effect between two volumes of
superfluid 3He-B. We first discuss how the calculation of the current-phase
relationships is divided into a mesoscopic and a macroscopic problem. We then
analyze mass and spin currents and the symmetry of weak links. In quantitative
calculations the weak link is assumed to be a pinhole, whose size is small in
comparison to the coherence length. We derive a quasiclassical expression for
the coupling energy of a pinhole, allowing also for scattering in the hole.
Using a selfconsistent order parameter near a wall, we calculate the
current-phase relationships in several cases. In the isotextural case, the
current-phase relations are plotted assuming a constant spin-orbit texture. In
the opposite anisotextural case the texture changes as a function of the phase
difference. For that we have to consider the stiffness of the macroscopic
texture, and we also calculate some surface interaction parameters. We analyze
the experiments by Marchenkov et al. We find that the observed pi states and
bistability hardly can be explained with the isotextural pinhole model, but a
good quantitative agreement is achieved with the anisotextural model.Comment: 20 pages, 21 figures, revtex