109 research outputs found

    看護学生の緩和ケアにおける がん性疼痛コントロールに対する初期体験

    Get PDF
    [Study design]. Inductive / exploratory study of qualitative factors.[Purpose]. To clarify how nursing students understand cancer pain control in palliative care.[Materials and methods]. As the first stage, we extracted learning experiences from 59 nursing students at College A. Inductive and exploratory analyses were performed from their reports submitted following a clinical practicum in palliative care. [Results]. Nursing student\u27s experiences with cancer pain control in palliative care was classified into three groups: 1)physical characteristics of "presence of continuous pain due to cancer", 2 psychological characteristics of "loss of ability brought about by cancer", and 3) family / social characteristics such as "lifestyle changes", "role changes", and "social isolation". From our analysis, "trying to understand the patient\u27s pain" and "reaching to understand the impact of cancer pain" were most important factors.[Conclusions]. Experiences of nursing student\u27s learning to understand pain control in palliative care contained two factors: "trying to understand the patient\u27s pain" and "reaching to understand the impact of cancer pain".【目的】本研究の目的は看護学生の緩和ケアおける,がん性疼痛コントロールをどの体験に基づき,どのように理解するのかを検討した。【方法】A大学看護学生59名に対する緩和ケアの臨地実習後レポートについて,がん性疼痛コントロールにおける理解の初期段階として,学生の体験を抽出し,帰納的・探索的に分析した。【結果】看護学生の緩和ケアにおけるがん性疼痛コントロールに対する体験は,「がんによる慢性的な疼痛が存在する」の身体的特徴であり,対象者の理解につながる体験では,「がんがもたらす能力の喪失」の心理的な特徴,「生活スタイルの変更」,「役割の変更」,「社会的孤立」の家庭・社会生活上の特徴の3つに分類ができた。さらに我々の分析から「その人の痛みを理解しようとすること」,「がんの痛みが及ぼす影響などを理解しようと少しでも歩み寄ること」が重要は因子であることがわかった。【結論】看護学生の緩和ケアにおける疼痛コントロールを理解する体験は,がんに対する疼痛緩和のプロセスに,学生が人間を尊重する姿勢として「その人の痛みを理解しようとすること」,「がんの痛みが及ぼす影響などを理解しようと少しでも歩み寄ること」であった。この2つの体験が,緩和ケアにおける疼痛コントロールを理解する初期段階と示唆できた

    Specific Enrichment of miRNAs in Arabidopsis thaliana Infected with Tobacco mosaic virus

    Get PDF
    RNA silencing is a broadly conserved machinery and is involved in many biological events. Small RNAs are key molecules in RNA silencing pathway that guide sequence-specific gene regulations and chromatin modifications. The silencing machinery works as an anti-viral defense in virus-infected plants. It is generally accepted that virus-specific small interfering (si) RNAs bind to the viral genome and trigger its cleavage. Previously, we have cloned and obtained sequences of small RNAs from Arabidopsis thaliana infected or uninfected with crucifer Tobacco mosaic virus. MicroRNAs (miRNAs) accumulated to a higher percentage of total small RNAs in the virus-infected plants. This was partly because the viral replication protein binds to the miRNA/miRNA* duplexes. In the present study, we mapped the sequences of small RNAs other than virus-derived siRNAs to the Arabidopsis genome and assigned each small RNA. It was demonstrated that only miRNAs increased as a result of viral infection. Furthermore, some newly identified miRNAs and miRNA candidates were found from the virus-infected plants despite a limited number of examined sequences. We propose that it is advantageous to use virus-infected plants as a source for cloning and identifying new miRNAs

    Efficacy and safety of olaparib, olaparib plus bevacizumab and niraparib maintenance treatment in Japanese patients with platinum-sensitive advanced ovarian cancer

    Get PDF
    Objective: To investigate whether maintenance treatment could be safely and effectively performed with olaparib, olaparib plus bevacizumab and niraparib in platinum-sensitive advanced ovarian cancer at multiple institutions in Japan. Methods: We investigated progression-free survival and adverse events in 117 patients with platinum-sensitive advanced ovarian cancer treated with maintenance therapy. Results: The median progression-free survival of 117 patients was 20.1 months. Patients with germline BRCA pathogenic variants had a significantly better prognosis than the other groups (P Conclusion: Maintenance treatment was performed effectively and safely. Renal function deterioration is likely to occur during maintenance treatment, and careful administration is important in platinum-sensitive advanced ovarian cancer

    ARTADE2DB: Improved Statistical Inferences for Arabidopsis Gene Functions and Structure Predictions by Dynamic Structure-Based Dynamic Expression (DSDE) Analyses

    Get PDF
    Recent advances in technologies for observing high-resolution genomic activities, such as whole-genome tiling arrays and high-throughput sequencers, provide detailed information for understanding genome functions. However, the functions of 50% of known Arabidopsis thaliana genes remain unknown or are annotated only on the basis of static analyses such as protein motifs or similarities. In this paper, we describe dynamic structure-based dynamic expression (DSDE) analysis, which sequentially predicts both structural and functional features of transcripts. We show that DSDE analysis inferred gene functions 12% more precisely than static structure-based dynamic expression (SSDE) analysis or conventional co-expression analysis based on previously determined gene structures of A. thaliana. This result suggests that more precise structural information than the fixed conventional annotated structures is crucial for co-expression analysis in systems biology of transcriptional regulation and dynamics. Our DSDE method, ARabidopsis Tiling-Array-based Detection of Exons version 2 and over-representation analysis (ARTADE2-ORA), precisely predicts each gene structure by combining two statistical analyses: a probe-wise co-expression analysis of multiple transcriptome measurements and a Markov model analysis of genome sequences. ARTADE2-ORA successfully identified the true functions of about 90% of functionally annotated genes, inferred the functions of 98% of functionally unknown genes and predicted 1,489 new gene structures and functions. We developed a database ARTADE2DB that integrates not only the information predicted by ARTADE2-ORA but also annotations and other functional information, such as phenotypes and literature citations, and is expected to contribute to the study of the functional genomics of A. thaliana. URL: http://artade.org

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    Post-intervention Status in Patients With Refractory Myasthenia Gravis Treated With Eculizumab During REGAIN and Its Open-Label Extension

    Get PDF
    OBJECTIVE: To evaluate whether eculizumab helps patients with anti-acetylcholine receptor-positive (AChR+) refractory generalized myasthenia gravis (gMG) achieve the Myasthenia Gravis Foundation of America (MGFA) post-intervention status of minimal manifestations (MM), we assessed patients' status throughout REGAIN (Safety and Efficacy of Eculizumab in AChR+ Refractory Generalized Myasthenia Gravis) and its open-label extension. METHODS: Patients who completed the REGAIN randomized controlled trial and continued into the open-label extension were included in this tertiary endpoint analysis. Patients were assessed for the MGFA post-intervention status of improved, unchanged, worse, MM, and pharmacologic remission at defined time points during REGAIN and through week 130 of the open-label study. RESULTS: A total of 117 patients completed REGAIN and continued into the open-label study (eculizumab/eculizumab: 56; placebo/eculizumab: 61). At week 26 of REGAIN, more eculizumab-treated patients than placebo-treated patients achieved a status of improved (60.7% vs 41.7%) or MM (25.0% vs 13.3%; common OR: 2.3; 95% CI: 1.1-4.5). After 130 weeks of eculizumab treatment, 88.0% of patients achieved improved status and 57.3% of patients achieved MM status. The safety profile of eculizumab was consistent with its known profile and no new safety signals were detected. CONCLUSION: Eculizumab led to rapid and sustained achievement of MM in patients with AChR+ refractory gMG. These findings support the use of eculizumab in this previously difficult-to-treat patient population. CLINICALTRIALSGOV IDENTIFIER: REGAIN, NCT01997229; REGAIN open-label extension, NCT02301624. CLASSIFICATION OF EVIDENCE: This study provides Class II evidence that, after 26 weeks of eculizumab treatment, 25.0% of adults with AChR+ refractory gMG achieved MM, compared with 13.3% who received placebo

    Minimal Symptom Expression' in Patients With Acetylcholine Receptor Antibody-Positive Refractory Generalized Myasthenia Gravis Treated With Eculizumab

    Get PDF
    The efficacy and tolerability of eculizumab were assessed in REGAIN, a 26-week, phase 3, randomized, double-blind, placebo-controlled study in anti-acetylcholine receptor antibody-positive (AChR+) refractory generalized myasthenia gravis (gMG), and its open-label extension
    corecore