225 research outputs found
Specification and guideline for technical aspects and scanning parameter settings of neonatal lung ultrasound examination
Lung ultrasound (LUS) is now widely used in the diagnosis and monitor of neonatal lung diseases.Nevertheless, in the published literatures,the LUS images may display a significant variation in technical execution,while scanning parameters may influence diagnostic accuracy.The inter- and intra-observer reliabilities of ultrasound exam have been extensively studied in general and in LUS.As expected,the reliability declines in the hands of novices when they perform the point-of-care ultrasound (POC US).Consequently,having appropriate guidelines regarding to technical aspects of neonatal LUS exam is very important especially because diagnosis is mainly based on interpretation of artifacts produced by the pleural line and the lungs.The present work aimed to create an instrument operation specification and parameter setting guidelines for neonatal LUS.Technical aspects and scanning parameter settings that allow for standardization in obtaining LUS images include (1)select a high-end equipment with high-frequency linear array transducer (12-14 MHz).(2)Choose preset suitable for lung examination or small organs.(3)Keep the probe perpendicular to the ribs or parallel to the intercostal space.(4)Set the scanning depth at 4-5 cm.(5)Set 1-2 focal zones and adjust them close to the pleural line.(6)Use fundamental frequency with speckle reduction 2-3 or similar techniques.(7)Turn off spatial compounding imaging.(8)Adjust the time-gain compensation to get uniform image from the near-to far-field
Invariance of the essential spectra of operator pencils
The essential spectrum of operator pencils with bounded coefficients in a Hilbert space is studied. Sufficient conditions in terms of the operator coefficients of two pencils are derived which guarantee the same essential spectrum. This is done by exploiting a strong relation between an operator pencil and a specific linear subspace (linear relation)
Arabidopsis RPT2a, 19S Proteasome Subunit, Regulates Gene Silencing via DNA Methylation
The ubiquitin/proteasome pathway plays a crucial role in many biological processes. Here we report a novel role for the Arabidopsis 19S proteasome subunit RPT2a in regulating gene activity at the transcriptional level via DNA methylation. Knockout mutation of the RPT2a gene did not alter global protein levels; however, the transcriptional activities of reporter transgenes were severely reduced compared to those in the wild type. This transcriptional gene silencing (TGS) was observed for transgenes under control of either the constitutive CaMV 35S promoter or the cold-inducible RD29A promoter. Bisulfite sequencing analysis revealed that both the transgene and endogenous RD29A promoter regions were hypermethylated at CG and non-CG contexts in the rpt2a mutant. Moreover, the TGS of transgenes driven by the CaMV 35S promoters was released by treatment with the DNA methylation inhibitor 5-aza-2′-deoxycytidine, but not by application of the inhibitor of histone deacetylase Trichostatin A. Genetic crosses with the DNA methyltransferase met1 single or drm1drm2cmt3 triple mutants also resulted in a release of CaMV 35S transgene TGS in the rpt2a mutant background. Increased methylation was also found at transposon sequences, suggesting that the 19S proteasome containing AtRPT2a negatively regulates TGS at transgenes and at specific endogenous genes through DNA methylation
Distinct roles for Arabidopsis SUMO protease ESD4 and its closest homolog ELS1
SUMO conjugation affects a broad range of processes in Arabidopsis thaliana, including flower initiation, pathogen defense, and responses to cold, drought and salt stress. We investigated two sequence-related SUMO-specific proteases that are both widely expressed and show that they differ significantly in their properties. The closest homolog of SUMO protease ESD4, ESD4-LIKE SUMO PROTEASE 1 (ELS1, alternatively called AtULP1a) has SUMO-specific proteolytic activity, but is functionally distinct from ESD4, as shown by intracellular localization, mutant phenotype and heterologous expression in yeast mutants. Furthermore, we show that the growth defects caused by loss of ESD4 function are not due to increased synthesis of the stress signal salicylic acid, as was previously shown for a SUMO ligase, indicating that impairment of the SUMO system affects plant growth in different ways. Our results demonstrate that two A. thaliana SUMO proteases showing close sequence similarity have distinct in vivo functions
Evaluation of chloroform/methanol extraction to facilitate the study of membrane proteins of non-model plants
Membrane proteins are of great interest to plant physiologists because of their important function in many physiological processes. However, their study is hampered by their low abundance and poor solubility in aqueous buffers. Proteomics studies of non-model plants are generally restricted to gel-based methods. Unfortunately, all gel-based techniques for membrane proteomics lack resolving power. Therefore, a very stringent enrichment method is needed before protein separation. In this study, protein extraction in a mixture of chloroform and methanol in combination with gel electrophoresis is evaluated as a method to study membrane proteins in non-model plants. Benefits as well as disadvantages of the method are discussed. To demonstrate the pitfalls of working with non-model plants and to give a proof of principle, the method was first applied to whole leaves of the model plant Arabidopsis. Subsequently, a comparison with proteins extracted from leaves of the non-model plant, banana, was made. To estimate the tissue and organelle specificity of the method, it was also applied on banana meristems. Abundant membrane or lipid-associated proteins could be identified in both tissues, with the leaf extract yielding a higher number of membrane proteins
The Circadian Clock Protein Timeless Regulates Phagocytosis of Bacteria in Drosophila
Survival of bacterial infection is the result of complex host-pathogen interactions. An often-overlooked aspect of these interactions is the circadian state of the host. Previously, we demonstrated that Drosophila mutants lacking the circadian regulatory proteins Timeless (Tim) and Period (Per) are sensitive to infection by S. pneumoniae. Sensitivity to infection can be mediated either by changes in resistance (control of microbial load) or tolerance (endurance of the pathogenic effects of infection). Here we show that Tim regulates resistance against both S. pneumoniae and S. marcescens. We set out to characterize and identify the underlying mechanism of resistance that is circadian-regulated. Using S. pneumoniae, we found that resistance oscillates daily in adult wild-type flies and that these oscillations are absent in Tim mutants. Drosophila have at least three main resistance mechanisms to kill high levels of bacteria in their hemolymph: melanization, antimicrobial peptides, and phagocytosis. We found that melanization is not circadian-regulated. We further found that basal levels of AMP gene expression exhibit time-of-day oscillations but that these are Tim-independent; moreover, infection-induced AMP gene expression is not circadian-regulated. We then show that phagocytosis is circadian-regulated. Wild-type flies exhibit up-regulated phagocytic activity at night; Tim mutants have normal phagocytic activity during the day but lack this night-time peak. Tim appears to regulate an upstream event in phagocytosis, such as bacterial recognition or activation of phagocytic hemocytes. Interestingly, inhibition of phagocytosis in wild type flies results in survival kinetics similar to Tim mutants after infection with S. pneumoniae. Taken together, these results suggest that loss of circadian oscillation of a specific immune function (phagocytosis) can have significant effects on long-term survival of infection
Transgenerational Stress Memory Is Not a General Response in Arabidopsis
Adverse conditions can trigger DNA damage as well as DNA repair responses in plants. A variety of stress factors are known to stimulate homologous recombination, the most accurate repair pathway, by increasing the concentration of necessary enzymatic components and the frequency of events. This effect has been reported to last into subsequent generations not exposed to the stress. To establish a basis for a genetic analysis of this transgenerational stress memory, a broad range of treatments was tested for quantitative effects on homologous recombination in the progeny. Several Arabidopsis lines, transgenic for well-established recombination traps, were exposed to 10 different physical and chemical stress treatments, and scored for the number of somatic homologous recombination (SHR) events in the treated generation as well as in the two subsequent generations that were not treated. These numbers were related to the expression level of genes involved in homologous recombination and repair. SHR was enhanced after the majority of treatments, confirming previous data and adding new effective stress types, especially interference with chromatin. Compounds that directly modify DNA stimulated SHR to values exceeding previously described induction rates, concomitant with an induction of genes involved in SHR. In spite of the significant stimulation in the stressed generations, the two subsequent non-treated generations only showed a low and stochastic increase in SHR that did not correlate with the degree of stimulation in the parental plants. Transcripts coding for SHR enzymes generally returned to pre-treatment levels in the progeny. Thus, transgenerational effects on SHR frequency are not a general response to abiotic stress in Arabidopsis and may require special conditions
- …