8 research outputs found

    Structure of a monomeric photosystem II core complex from a cyanobacterium acclimated to far-red light reveals the functions of chlorophylls d and f

    Get PDF
    Far-red light (FRL) photoacclimation in cyanobacteria provides a selective growth advantage for some terrestrial cyanobacteria by expanding the range of photosynthetically active radiation to include far-red/near-infrared light (700-800 nm). During this photoacclimation process, photosystem II (PSII), the water:plastoquinone photooxidoreductase involved in oxygenic photosynthesis, is modified. The resulting FRL-PSII is comprised of FRL-specific core subunits and binds chlorophyll (Chl) d and Chl f molecules in place of several of the Chl a molecules found when cells are grown in visible light. These new Chls effectively lower the energy canonically thought to define the red limit for light required to drive photochemical catalysis of water oxidation. Changes to the architecture of FRL-PSII were previously unknown, and the positions of Chl d and Chl f molecules had only been proposed from indirect evidence. Here, we describe the 2.25 angstrom resolution cryo-EM structure of a monomeric FRL-PSII core complex from Synechococcus sp. PCC 7335 cells that were acclimated to FRL. We identify one Chl d molecule in the Chl(D1) position of the electron transfer chain and four Chl f molecules in the core antenna. We also make observations that enhance our understanding of PSII biogenesis, especially on the acceptor side of the complex where a bicarbonate molecule is replaced by a glutamate side chain in the absence of the assembly factor Psb28. In conclusion, these results provide a structural basis for the lower energy limit required to drive water oxidation, which is the gateway for most solar energy utilization on earth

    Effect of Dehydrated Trehalose Matrix on the Kinetics of Forward Electron Transfer Reactions in Photosystem I

    Get PDF
    The effect of dehydration on the kinetics of forward electron transfer (ET) has been studied in cyanobacterial photosystem I (PS I) complexes in a trehalose glassy matrix by time-resolved optical and EPR spectroscopies in the 100 fs to 1 ms time domain. The kinetics of the flash-induced absorption changes in the subnanosecond time domain due to primary and secondary charge separation steps were monitored by pump–probe laser spectroscopy with 20-fs low-energy pump pulses centered at 720 nm. The back-reaction kinetics of P700 were measured by high-field time-resolved EPR spectroscopy and the forward kinetics of A∙−1A/A∙−1B→FX by time-resolved optical spectroscopy at 480 nm. The kinetics of the primary ET reactions to form the primary P∙+700A∙−0 and the secondary P∙+700A∙−1 ion radical pairs were not affected by dehydration in the trehalose matrix, while the yield of the P∙+700A∙−1 was decreased by ~20%. Forward ET from the phylloquinone molecules in the A∙−1A and A∙−1B sites to the iron–sulfur cluster FX slowed from ~220 ns and ~20 ns in solution to ~13 ÎŒs and ~80 ns, respectively. However, as shown by EPR spectroscopy, the ~15 ÎŒs kinetic phase also contains a small contribution from the recombination between A∙−1B and P∙+700. These data reveal that the initial ET reactions from P700 to secondary phylloquinone acceptors in the A- and B-branches of cofactors (A1A and A1B) remain unaffected whereas ET beyond A1A and A1B is slowed or prevented by constrained protein dynamics due to the dry trehalose glass matrix

    Structure of a dimeric photosystem II complex from a cyanobacterium acclimated to far-red light

    Get PDF
    Photosystem II (PSII) is the water-splitting enzyme central to oxygenic photosynthesis. To drive water oxidation, light is harvested by accessory pigments, mostly chlorophyll (Chl) a molecules, which absorb visible light (400–700 nm). Some cyanobacteria facultatively acclimate to shaded environments by altering their photosynthetic machinery to additionally absorb far-red light (FRL, 700–800 nm), a process termed far-red light photoacclimation or FaRLiP. During far-red light photoacclimation, FRL-PSII is assembled with FRL-specific isoforms of the subunits PsbA, PsbB, PsbC, PsbD, and PsbH, and some Chl-binding sites contain Chls d or f instead of the usual Chl a. The structure of an apo-FRL-PSII monomer lacking the FRL-specific PsbH subunit has previously been determined, but visualization of the dimeric complex has remained elusive. Here, we report the cryo-EM structure of a dimeric FRL–PSII complex. The site assignments for Chls d and f are consistent with those assigned in the previous apo-FRL-PSII monomeric structure. All sites that bind Chl d or Chl f at high occupancy exhibit a FRL-specific interaction of the formyl moiety of the Chl d or Chl f with the protein environment, which in some cases involves a phenylalanine sidechain. The structure retains the FRL-specific PsbH2 subunit, which appears to alter the energetic landscape of FRL-PSII, redirecting energy transfer from the phycobiliprotein complex to a Chl f molecule bound by PsbB2 that acts as a bridge for energy transfer to the electron transfer chain. Collectively, these observations extend our previous understanding of the structure-function relationship that allows PSII to function using lower energy FRL

    Characterization of chlorophyll f synthase heterologously produced in Synechococcus sp. PCC 7002.

    Get PDF
    In diverse terrestrial cyanobacteria, Far-Red Light Photoacclimation (FaRLiP) promotes extensive remodeling of the photosynthetic apparatus, including photosystems (PS)I and PSII and the cores of phycobilisomes, and is accompanied by the concomitant biosynthesis of chlorophyll (Chl) d and Chl f. Chl f synthase, encoded by chlF, is a highly divergent paralog of psbA; heterologous expression of chlF from Chlorogloeopsis fritscii PCC 9212 led to the light-dependent production of Chl f in Synechococcus sp. PCC 7002 (Ho et al., Science 353, aaf9178 (2016)). In the studies reported here, expression of the chlF gene from Fischerella thermalis PCC 7521 in the heterologous system led to enhanced synthesis of Chl f. N-terminally [His]10-tagged ChlF7521 was purified and identified by immunoblotting and tryptic-peptide mass fingerprinting. As predicted from its sequence similarity to PsbA, ChlF bound Chl a and pheophytin a at a ratio of ~ 3-4:1, bound ÎČ-carotene and zeaxanthin, and was inhibited in vivo by 3-(3,4-dichlorophenyl)-1,1-dimethylurea. Cross-linking studies and the absence of copurifying proteins indicated that ChlF forms homodimers. Flash photolysis of ChlF produced a Chl a triplet that decayed with a lifetime (1/e) of ~ 817 ”s and that could be attributed to intersystem crossing by EPR spectroscopy at 90 K. When the chlF7521 gene was expressed in a strain in which the psbD1 and psbD2 genes had been deleted, significantly more Chl f was produced, and Chl f levels could be further enhanced by specific growth-light conditions. Chl f synthesized in Synechococcus sp. PCC 7002 was inserted into trimeric PSI complexes

    Structure of a monomeric photosystem II core complex from a cyanobacterium acclimated to far-red light reveals the functions of chlorophylls d and f

    Full text link
    Far-red light (FRL) photoacclimation in cyanobacteria provides a selective growth advantage for some terrestrial cyanobacteria by expanding the range of photosynthetically active radiation to include far-red/near-infrared light (700–800 nm). During this photoacclimation process, photosystem II (PSII), the water:plastoquinone photooxidoreductase involved in oxygenic photosynthesis, is modified. The resulting FRL-PSII is comprised of FRL-specific core subunits and binds chlorophyll (Chl) d and Chl f molecules in place of several of the Chl a molecules found when cells are grown in visible light. These new Chls effectively lower the energy canonically thought to define the “red limit” for light required to drive photochemical catalysis of water oxidation. Changes to the architecture of FRL-PSII were previously unknown, and the positions of Chl d and Chl f molecules had only been proposed from indirect evidence. Here, we describe the 2.25 Å resolution cryo-EM structure of a monomeric FRL-PSII core complex from Synechococcus sp. PCC 7335 cells that were acclimated to FRL. We identify one Chl d molecule in the ChlD1 position of the electron transfer chain and four Chl f molecules in the core antenna. We also make observations that enhance our understanding of PSII biogenesis, especially on the acceptor side of the complex where a bicarbonate molecule is replaced by a glutamate side chain in the absence of the assembly factor Psb28. In conclusion, these results provide a structural basis for the lower energy limit required to drive water oxidation, which is the gateway for most solar energy utilization on earth

    Structure of a dimeric photosystem II complex from a cyanobacterium acclimated to far-red light

    No full text
    Photosystem II (PSII) is the water-splitting enzyme central to oxygenic photosynthesis. To drive water oxidation, light is harvested by accessory pigments, mostly chlorophyll (Chl) a molecules, which absorb visible light (400–700 nm). Some cyanobacteria facultatively acclimate to shaded environments by altering their photosynthetic machinery to additionally absorb far-red light (FRL, 700–800 nm), a process termed far-red light photoacclimation or FaRLiP. During far-red light photoacclimation, FRL-PSII is assembled with FRL-specific isoforms of the subunits PsbA, PsbB, PsbC, PsbD, and PsbH, and some Chl-binding sites contain Chls d or f instead of the usual Chl a. The structure of an apo-FRL-PSII monomer lacking the FRL-specific PsbH subunit has previously been determined, but visualization of the dimeric complex has remained elusive. Here, we report the cryo-EM structure of a dimeric FRL–PSII complex. The site assignments for Chls d and f are consistent with those assigned in the previous apo-FRL-PSII monomeric structure. All sites that bind Chl d or Chl f at high occupancy exhibit a FRL-specific interaction of the formyl moiety of the Chl d or Chl f with the protein environment, which in some cases involves a phenylalanine sidechain. The structure retains the FRL-specific PsbH2 subunit, which appears to alter the energetic landscape of FRL-PSII, redirecting energy transfer from the phycobiliprotein complex to a Chl f molecule bound by PsbB2 that acts as a bridge for energy transfer to the electron transfer chain. Collectively, these observations extend our previous understanding of the structure-function relationship that allows PSII to function using lower energy FRL
    corecore