20 research outputs found

    The H I angular momentum-mass relation

    Get PDF
    We study the relationship between the H I specific angular momentum (jg\rm j_{g}) and the H I mass (Mg\rm M_{g}) for a sample of galaxies with well-measured H I rotation curves. We find that the relation is well described by an unbroken power law jg\rm j_{g}Mg\rm M_{g}α over the entire mass range (107-1010.5 M⊙), with α = 0.89 ± 0.05 (scatter 0.18 dex). This is in reasonable agreement with models which assume that evolutionary processes maintain H I discs in a marginally stable state. The slope we observe is also significantly different from both the j ∝ M2/3 relation expected for dark matter haloes from tidal torquing models and the observed slope of the specific angular momentum-mass relation for the stellar component of disc galaxies. Our sample includes two H I-bearing ultra-diffuse galaxies, and we find that their angular momentum follows the same relation as other galaxies. The only discrepant galaxies in our sample are early-type galaxies with large rotating H I discs, which are found to have significantly higher angular momentum than expected from the power-law relation. The H I discs of all these early-type galaxies are misaligned or counter-rotating with respect to the stellar discs, consistent with the gas being recently accreted. We speculate that late-stage wet mergers, as well as cold flows play a dominant role in determining the kinematics of the baryonic component of galaxies as suggested by recent numerical simulations

    Probing galaxy evolution through HI 21-cm emission and absorption: current status and prospects with the Square Kilometre Array

    Full text link
    One of the major science goals of the Square Kilometre Array (SKA) is to understand the role played by atomic hydrogen (HI) gas in the evolution of galaxies throughout cosmic time. The hyperfine transition line of the hydrogen atom at 21-cm is one of the best tools to detect and study the properties of HI gas associated with galaxies. In this article, we review our current understanding of HI gas and its relationship with galaxies through observations of the 21-cm line both in emission and absorption. In addition, we provide an overview of the HI science that will be possible with SKA and its pre-cursors and pathfinders, i.e. HI 21-cm emission and absorption studies of galaxies from nearby to high redshifts that will trace various processes governing galaxy evolution.Comment: 31 pages, 7 figures, accepted on 27 May 2022 for publication in the Journal of Astrophysics and Astronomy (to appear in the special issue on "Indian participation in the SKA"), figure 4 has been update

    MIGHTEE-HI: the HI Size-Mass relation over the last billion years

    Get PDF
    We present the observed HI size-mass relation of 204204 galaxies from the MIGHTEE Survey Early Science data. The high sensitivity of MeerKAT allows us to detect galaxies spanning more than 4 orders of magnitude in HI mass, ranging from dwarf galaxies to massive spirals, and including all morphological types. This is the first time the relation has been explored on a blind homogeneous data set which extends over a previously unexplored redshift range of 0<z<0.0840 < z < 0.084, i.e. a period of around one billion years in cosmic time. The sample follows the same tight logarithmic relation derived from previous work, between the diameter (DHID_{\rm HI}) and the mass (MHIM_{\rm HI}) of HI discs. We measure a slope of 0.501±0.0080.501\pm 0.008, an intercept of 3.2520.074+0.073-3.252^{+0.073}_{-0.074}, and an observed scatter of 0.0570.057 dex. For the first time, we quantify the intrinsic scatter of 0.054±0.0030.054 \pm 0.003 dex (10%{\sim} 10 \%), which provides a constraint for cosmological simulations of galaxy formation and evolution. We derive the relation as a function of galaxy type and find that their intrinsic scatters and slopes are consistent within the errors. We also calculate the DHIMHID_{\rm HI} - M_{\rm HI} relation for two redshift bins and do not find any evidence for evolution with redshift. These results suggest that over a period of one billion years in lookback time, galaxy discs have not undergone significant evolution in their gas distribution and mean surface mass density, indicating a lack of dependence on both morphological type and redshift.Comment: 10 pages, 5 figures, accepted for publication in MNRA

    MIGHTEE-HI: The first MeerKAT HI mass function from an untargeted interferometric survey

    Get PDF
    We present the first measurement of the HI mass function (HIMF) using data from MeerKAT, based on 276 direct detections from the MIGHTEE Survey Early Science data covering a period of approximately a billion years (0z0.0840 \leq z \leq 0.084 ). This is the first HIMF measured using interferometric data over non-group or cluster field, i.e. a deep blank field. We constrain the parameters of the Schechter function which describes the HIMF with two different methods: 1/Vmax1/\rm V_{\rm max} and Modified Maximum Likelihood (MML). We find a low-mass slope α=1.290.26+0.37\alpha=-1.29^{+0.37}_{-0.26}, `knee' mass log10(M/M)=10.070.24+0.24\log_{10}(M_{*}/{\rm M_{\odot}}) = 10.07^{+0.24}_{-0.24} and normalisation log10(ϕ/Mpc3)=2.340.36+0.32\log_{10}(\phi_{*}/\rm Mpc^{-3})=-2.34^{+0.32}_{-0.36} (H0=67.4H_0 = 67.4 kms1^{-1} Mpc1^{-1}) for 1/Vmax1/\rm V_{\rm max} and α=1.440.10+0.13\alpha=-1.44^{+0.13}_{-0.10}, `knee' mass log10(M/M)=10.220.13+0.10\log_{10}(M_{*}/{\rm M_{\odot}}) = 10.22^{+0.10}_{-0.13} and normalisation log10(ϕ/Mpc3)=2.520.14+0.19\log_{10}(\phi_{*}/\rm Mpc^{-3})=-2.52^{+0.19}_{-0.14} for MML. When using 1/Vmax1/\rm V_{\rm max} we find both the low-mass slope and `knee' mass to be consistent within 1σ1\sigma with previous studies based on single-dish surveys. The cosmological mass density of HI is found to be slightly larger than previously reported: ΩHI=5.460.99+0.94×104h67.41\Omega_{\rm HI}=5.46^{+0.94}_{-0.99} \times 10^{-4}h^{-1}_{67.4} from 1/Vmax1/\rm V_{\rm max} and ΩHI=6.310.31+0.31×104h67.41\Omega_{\rm HI}=6.31^{+0.31}_{-0.31} \times 10^{-4}h^{-1}_{67.4} from MML but consistent within the uncertainties. We find no evidence for evolution of the HIMF over the last billion years.Comment: 13 pages, 9 figures, accepted for publication in MNRA

    MIGHTEE-HI: HI galaxy properties in the large scale structure environment at z ∼ 0.37 from a stacking experiment

    Get PDF
    We present the first measurement of HI mass of star-forming galaxies in different large scale structure environments from a blind survey at z ∼ 0.37. In particular, we carry out a spectral line stacking analysis considering 2875 spectra of colour-selected star-forming galaxies undetected in HI at 0.23 < z < 0.49 in the COSMOS field, extracted from the MIGHTEE-HI Early Science datacubes, acquired with the MeerKAT radio telescope. We stack galaxies belonging to different subsamples depending on three different definitions of large scale structure environment: local galaxy overdensity, position inside the host dark matter halo (central, satellite, or isolated), and cosmic web type (field, filament, or knot). We first stack the full star-forming galaxy sample and find a robust HI detection yielding an average galaxy HI mass of MHI = (8.12 ± 0.75) × 109 M⊙ at ∼11.8σ. Next, we investigate the different subsamples finding a negligible difference in MHI as a function of the galaxy overdensity. We report an HI excess compared to the full sample in satellite galaxies (MHI = (11.31 ± 1.22) × 109, at ∼10.2σ) and in filaments (MHI = (11.62 ± 0.90) × 109. Conversely, we report non-detections for the central and knot galaxies subsamples, which appear to be HI-deficient. We find the same qualitative results also when stacking in units of HI fraction (fHI). We conclude that the HI amount in star-forming galaxies at the studied redshifts correlates with the large scale structure environment

    MIGHTEE-\HI: Possible interactions with the galaxy NGC~895

    Get PDF
    The transformation and evolution of a galaxy is strongly influenced by interactions with its environment. Neutral hydrogen (\HI) is an excellent way to trace these interactions. Here, we present \HI\ observations of the spiral galaxy NGC~895, which was previously thought to be isolated. High-sensitivity \HI\ observations from the MeerKAT large survey project MIGHTEE reveal possible interaction features, such as extended spiral arms, and the two newly discovered \HI\ companions, that drive us to change the narrative that it is an isolated galaxy. We combine these observations with deep optical images from the Hyper Suprime Camera to show an absence of tidal debris between NGC 895 and its companions. We do find an excess of light in the outer parts of the companion galaxy MGTH_\_J022138.1-052631 which could be an indication of external perturbation and thus possible sign of interactions. Our analysis shows that NGC~895 is an actively star-forming galaxy with a SFR of 1.75±0.09[M/yr]\mathrm{1.75 \pm 0.09 [M_{\odot}/yr]}, a value typical for high stellar mass galaxies on the star forming main sequence. It is reasonable to state that different mechanisms may have contributed to the observed features in NGC~895 and this emphasizes the need to revisit the target with more detailed observations. Our work shows the high potential and synergy of using state-of-the-art data in both \HI\ and optical to reveal a more complete picture of galaxy environments.Comment: 14 pages, 10 figures. Accepted for publication in MNRA
    corecore