259 research outputs found

    Soil and plant factors driving the community of soil-borne microorganisms across chronosequences of secondary succession of chalk grasslands with a neutral pH

    Get PDF
    Although soil pH has been shown to be an important factor driving microbial communities, relatively little is known about the other potentially important factors that shape soil-borne microbial community structure. This study examined plant and microbial communities across a series of neutral pH fields (pH=7.0-7.5) representing a chronosequence of secondary succession after former arable fields were taken out of production. These fields ranged from 17 to >66 years since the time of abandonment, and an adjacent arable field was included as a reference. Hierarchical clustering analysis, nonmetric multidimensional scaling and analysis of similarity of 52 different plant species showed that the plant community composition was significantly different in the different chronosequences, and that plant species richness and diversity increased with time since abandonment. The microbial community structure, as analyzed by phylogenetic microarrays (PhyloChips), was significantly different in arable field and the early succession stage, but no distinct microbial communities were observed for the intermediate and the late succession stages. The most determinant factors in shaping the soil-borne microbial communities were phosphorous and NH4+. Plant community composition and diversity did not have a significant effect on the belowground microbial community structure or diversit

    Cophenetic correlation analysis as a strategy to select phylogenetically informative proteins: an example from the fungal kingdom

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The construction of robust and well resolved phylogenetic trees is important for our understanding of many, if not all biological processes, including speciation and origin of higher taxa, genome evolution, metabolic diversification, multicellularity, origin of life styles, pathogenicity and so on. Many older phylogenies were not well supported due to insufficient phylogenetic signal present in the single or few genes used in phylogenetic reconstructions. Importantly, single gene phylogenies were not always found to be congruent. The phylogenetic signal may, therefore, be increased by enlarging the number of genes included in phylogenetic studies. Unfortunately, concatenation of many genes does not take into consideration the evolutionary history of each individual gene. Here, we describe an approach to select informative phylogenetic proteins to be used in the Tree of Life (TOL) and barcoding projects by comparing the cophenetic correlation coefficients (CCC) among individual protein distance matrices of proteins, using the fungi as an example. The method demonstrated that the quality and number of concatenated proteins is important for a reliable estimation of TOL. Approximately 40–45 concatenated proteins seem needed to resolve fungal TOL.</p> <p>Results</p> <p>In total 4852 orthologous proteins (KOGs) were assigned among 33 fungal genomes from the Asco- and Basidiomycota and 70 of these represented single copy proteins. The individual protein distance matrices based on 531 concatenated proteins that has been used for phylogeny reconstruction before <abbrgrp><abbr bid="B14">14</abbr></abbrgrp> were compared one with another in order to select those with the highest CCC, which then was used as a reference. This reference distance matrix was compared with those of the 70 single copy proteins selected and their CCC values were calculated. Sixty four KOGs showed a CCC above 0.50 and these were further considered for their phylogenetic potential. Proteins belonging to the cellular processes and signaling KOG category seem more informative than those belonging to the other three categories: information storage and processing; metabolism; and the poorly characterized category. After concatenation of 40 proteins the topology of the phylogenetic tree remained stable, but after concatenation of 60 or more proteins the bootstrap support values of some branches decreased, most likely due to the inclusion of proteins with lowers CCC values. The selection of protein sequences to be used in various TOL projects remains a critical and important process. The method described in this paper will contribute to a more objective selection of phylogenetically informative protein sequences.</p> <p>Conclusion</p> <p>This study provides candidate protein sequences to be considered as phylogenetic markers in different branches of fungal TOL. The selection procedure described here will be useful to select informative protein sequences to resolve branches of TOL that contain few or no species with completely sequenced genomes. The robust phylogenetic trees resulting from this method may contribute to our understanding of organismal diversification processes. The method proposed can be extended easily to other branches of TOL.</p

    Intraspecific Evolution of Rhizoctonia solani AG-1 IA Associated with Soybean and Rice in Brazil based on Polymorphisms at the ITS-5.8S rDNA Operon

    Get PDF
    Rhizoctonia solani AG-1 IA causes leaf blight on soybean and rice. Despite the fact that R. solani AG-1 IA is a major pathogen affecting soybean and rice in Brazil and elsewhere in the world, little information is available on its genetic diversity and evolution. This study was an attempt to reveal the origin, and the patterns of movement and amplification of epidemiologically significant genotypes of R.solani AG-1 IA from soybean and rice in Brazil. For inferring intraspecific evolution of R. solani AG-1 IA sampled from soybean and rice, networks of ITS-5.8S rDNA sequencing haplotypes were built using the statistical parsimony algorithm from Clement et al. (2000) Molecular Ecology 9: 1657-1660. Higher haplotype diversity (Nei M 1987, Molecular Evolutionary Genetics Columbia University Press, New york: 512p.) was observed for the Brazilian soybean sample of R. solani AG-1 IA (0.827) in comparison with the rest of the world sample (0.431). Within the south-central American clade (3-2), four haplotypes of R.solani AG-1 IA from Mato Grosso, one from Tocantins, one from Maranhão, and one from Cuba occupied the tips of the network, indicating recent origin. The putative ancestral haplotypes had probably originated either from Mato Grosso or Maranhão States. While 16 distinct haplotypes were found in a sample of 32 soybean isolates of the pathogen, the entire rice sample (n=20) was represented by a single haplotype (haplotype 5), with a worldwide distribution. The results from nested-cladistic analysis indicated restricted gene flow with isolation by distance (or restricted dispersal by distance in nonsexual species) for the south-central American clade (3-2), mainly composed by soybean haplotype

    Caracterização morfomolecular de isolados de Pleurotus ostreatus (Jacq. Fr.) kummer em relação à luminosidade e temperatura de frutificação

    Get PDF
    A temperatura é um dos principais fatores que influenciam o desenvolvimento e a introdução de cogumelos em nova áreas. O efeito da temperatura (15&ordm;C e 28&ordm;C) e a luminosidade (120 e 900 lux) foram avaliados em oito isolados de P. ostreatus quanto à precocidade, eficiência biológica, área do pileus, padrão de formação das pencas, coloração e resistência ao manuseio. A variabilidade genética dos isolados foi analisada pelo método "Random Amplified Polymorphic DNA" ou DNA polimórfico amplificado ao acaso (RAPD). O isolado Pos 98/37 foi o único a produzir a 28&ordm;C e 900 lux, apresentando píleo branco nessa temperatura e cinza a 15&ordm;C e 120 lux. O isolado Pos 96/05, o mais tardio, apresentou píleo chumbo a 15&ordm;C a 120 lux, assim como os demais isolados nesta temperatura. Os isolados cultivados a 15&ordm;C não diferiram quanto à maior resistência ao manuseio, enquanto a 28&ordm;C, os cogumelos obtidos foram mais frágeis. Quanto à eficiência biológica, o isolado Pos 98/38 foi mais eficiente. O isolado 98/37 a 28&ordm;C, comparado com o mesmo isolado a 15&ordm;C, foi mais eficiente e apresentou padrão de formação de pencas assimétrico. Entre os isolados cultivados a 15&ordm;C, o padrão de formação de pencas foi similar exceto nos isolados Pos 97/15 e Pos 97/17. Na caracterização molecular, o isolado Pos 98/37 apresentou 30% de similaridade com os demais. A temperatura de frutificação e a intensidade luminosa influenciaram a indução e o desenvolvimento dos isolados.Temperature is one of the main factors affecting mushrooms development and introduction in new areas. Effects of temperature (15&ordm;C and 28&ordm;C) and luminosity (120 and 900 lux) were evaluated for eight P. ostreatus strains in relation to precocity, yield, pileus area, stalk formation pattern, coloration and handling resistance. Genetic variability of strains was analysed by the Random Amplified Polymorphic DNA (RAPD) method. The Pos 98/37 strain was the only to yield white pileus at 28&ordm;C - 900 lux, and grey ones at 15&ordm;C and 120 lux. The Pos 96/05 strain, the latest, produced lead-coloured pileus at 15&ordm;C, as did the remaining strains at this temperature. Strains cultivated at 15&ordm;C did not differ in relation to handling resistance. At 28&ordm;C mushrooms were less resistant. In relation to yield, the Pos 98/38 strain was significantly more efficient. The Pos 98/37 strain, at 28&ordm;C, as compared to the same strain at 15&ordm;C, was more efficient and had an asymmetric stalk formation pattern. Among strains cultivated at 15&ordm;C, the stalk formation pattern was symmetric, except for the Pos 97/15 and Pos 97/17 strains. Molecular characterization of the Pos 98/37 strain was 30% similar to the remaining strains. The temperature of fructification and luminosity influence the induction and development of the isolates

    The reach of the genome signature in prokaryotes

    Get PDF
    BACKGROUND: With the increased availability of sequenced genomes there have been several initiatives to infer evolutionary relationships by whole genome characteristics. One of these studies suggested good congruence between genome synteny, shared gene content, 16S ribosomal DNA identity, codon usage and the genome signature in prokaryotes. Here we rigorously test the phylogenetic signal of the genome signature, which consists of the genome-specific relative frequencies of dinucleotides, on 334 sequenced prokaryotic genome sequences. RESULTS: Intrageneric comparisons show that in general the genomic dissimilarity scores are higher than in intraspecific comparisons, in accordance with the suggested phylogenetic signal of the genome signature. Exceptions to this trend, (Bartonella spp., Bordetella spp., Salmonella spp. and Yersinia spp.), which have low average intrageneric genomic dissimilarity scores, suggest that members of these genera might be considered the same species. On the other hand, high genomic dissimilarity values for intraspecific analyses suggest that in some cases (e.g.Prochlorococcus marinus, Pseudomonas fluorescens, Buchnera aphidicola and Rhodopseudomonas palustris) different strains from the same species may actually represent different species. Comparing 16S rDNA identity with genomic dissimilarity values corroborates the previously suggested trend in phylogenetic signal, albeit that the dissimilarity values only provide low resolution. CONCLUSION: The genome signature has a distinct phylogenetic signal, independent of individual genetic marker genes. A reliable phylogenetic clustering cannot be based on dissimilarity values alone, as bootstrapping is not possible for this parameter. It can however be used to support or refute a given phylogeny and resulting taxonomy

    Stability of ammonia oxidizer communities upon nitrogen fertilizer pulse disturbances is dependent on diversity

    Get PDF
    Diversity of the soil microbial community is an important factor affecting its stability against disturbance. However, the impact of the decline in soil microbial diversity on the stability of ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) is not known, particularly considering the repeated soil nutrient disturbances occurring in modern agricultural systems. Here, we conducted a microcosm experiment and modified the soil microbial diversity using the dilution-to-extinction approach to determine the stability and population dynamics of AOB and AOA communities with repeated nitrogen (N) fertilizer application. Our results demonstrated that the AOB community became more abundant and stable against repeated disturbances by N in the treatments with the highest microbial diversity. In contrast, the abundance of AOA decreased following repeated N fertilizer application, regardless of the microbial diversity. Notably, during the initial application phase, AOA displayed a potential for increased abundance in treatments with high soil microbial diversity. These findings highlight that the soil microbial diversity controls the stability of ammonia oxidizers during short- interval repeated N disturbances

    PhyloFunDB: A Pipeline to Create and Update Functional Gene Taxonomic Databases

    Get PDF
    The increase in sequencing capacity has amplified the number of taxonomically unclassified sequences in most databases. The classification of such sequences demands phylogenetic tree construction and comparison to currently classified sequences, a process that demands the processing of large amounts of data and use of several different software. Here, we present PhyloFunDB, a pipeline for extracting, processing, and inferring phylogenetic trees from specific functional genes. The goal of our work is to decrease processing time and facilitate the grouping of sequences that can be used for improved taxonomic classification of functional gene datasets

    Responses of Acidobacteria Granulicella sp. WH15 to High Carbon Revealed by Integrated Omics Analyses

    Get PDF
    The phylum Acidobacteria is widely distributed in soils, but few representatives have been cultured. In general, Acidobacteria are oligotrophs and exhibit slow growth under laboratory conditions. We sequenced the genome of Granulicella sp. WH15, a strain obtained from decaying wood, and determined the bacterial transcriptome and proteome under growth in poor medium with a low or high concentration of sugar. We detected the presence of 217 carbohydrate-associated enzymes in the genome of strain WH15. Integrated analysis of the transcriptomic and proteomic profiles showed that high sugar triggered a stress response. As part of this response, transcripts related to cell wall stress, such as sigma factor σW and toxin–antitoxin (TA) systems, were upregulated, as were several proteins involved in detoxification and repair, including MdtA and OprM. KEGG metabolic pathway analysis indicated the repression of carbon metabolism (especially the pentose phosphate pathway) and the reduction of protein synthesis, carbohydrate metabolism, and cell division, suggesting the arrest of cell activity and growth. In summary, the stress response of Granulicella sp. WH15 induced by the presence of a high sugar concentration in the medium resulted in the intensification of secretion functions to eliminate toxic compounds and the reallocation of resources to cell maintenance instead of growth

    Impact of Different Trace Elements on the Growth and Proteome of Two Strains of Granulicella, Class “Acidobacteriia”

    Get PDF
    Acidobacteria represents one of the most dominant bacterial groups across diverse ecosystems. However, insight into their ecology and physiology has been hampered by difficulties in cultivating members of this phylum. Previous cultivation efforts have suggested an important role of trace elements for the proliferation of Acidobacteria, however, the impact of these metals on their growth and metabolism is not known. In order to gain insight into this relationship, we evaluated the effect of trace element solution SL10 on the growth of two strains (5B5 and WH15) of Acidobacteria belonging to the genus Granulicella and studied the proteomic responses to manganese (Mn). Granulicella species had highest growth with the addition of Mn, as well as higher tolerance to this metal compared to seven other metal salts. Variations in tolerance to metal salt concentrations suggests that Granulicella sp. strains possess different mechanisms to deal with metal ion homeostasis and stress. Furthermore, Granulicella sp. 5B5 might be more adapted to survive in an environment with higher concentration of several metal ions when compared to Granulicella sp. WH15. The proteomic profiles of both strains indicated that Mn was more important in enhancing enzymatic activity than to protein expression regulation. In the genomic analyses, we did not find the most common transcriptional regulation of Mn homeostasis, but we found candidate transporters that could be potentially involved in Mn homeostasis for Granulicella species. The presence of such transporters might be involved in tolerance to higher Mn concentrations, improving the adaptability of bacteria to metal enriched environments, such as the decaying wood-rich Mn environment from which these two Granulicella strains were isolated

    Caracterização de isolados de Xanthomonas axonopodis pv. phaseoli

    Get PDF
    A simple, quick and easy protocol was standardized for extraction of total DNA of the bacteria Xanthomonas axonopodis pv. phaseoli. The DNA obtained by this method had high quality and the quantity was enough for the Random Amplified Polymorphic DNA (RAPD) reactions with random primers, and Polymerase Chain Reaction (PCR) with primers of the hypersensitivity and pathogenicity gene (hrp). The DNA obtained was free of contamination by proteins or carbohydrates. The ratio 260nm/380nm of the DNA extracted ranged from 1.7 to 1.8. The hrp gene cluster is required by bacterial plant pathogen to produce symptoms on susceptible hosts and hypersensitive reaction on resistant hosts. This gene has been found in different bacteria as well as in Xanthomonas campestris pv. vesicatoria (9). The primers RST21 and RST22 (9) were used to amplify the hrp gene of nine different isolates of Xanthomonas axonopodis pv. phaseoli from Botucatu, São Paulo State, Brazil, and one isolate, "Davis". PCR amplified products were obtained in all isolates pathogenic to beans.Um protocolo simples, rápido e fácil foi padronizado para extração de DNA total da bactéria Xanthomonas axonopodis pv. phaseoli. O DNA obtido por esse método foi de ótima qualidade e quantidades suficientes para reações de RAPD (Random Amplified Polymorphic DNA) com "primers" randômicos e PCR (Polymerase Chain Reaction) com "primers" do gene de hipersensibilidade e patogenicidade (hrp). O DNA obtido não apresentou nenhuma contaminação por proteínas ou carboidratos, sendo a razão 260 nm/ 380nm entre 1,7 a 1,8. O agrupamento do gene hrp (reação de hipersensibilidade e patogenicidade) é requerido através do patogeno bacteriano de planta para produzir sintomas nos hospedeiros suscetíveis e reação hipersensível em hospedeiros resistentes é encontrado em diferentes bactérias e também em Xanthomonas campestris pv. vesicatoria (9). Os primers RST21 e RST22 (9) foram usados para ampliar o gene de hrp de nove diferentes isolados de Xanthomonas axonopodis pv. phaseoli, sendo oito de Botucatu, São Paulo, Brasil, e um de "Davis" (EUA). Foi encontrado o produto de PCR amplificado em todos os isolados testados e todos eram patogênicos ao feijão. A presença do gene em isolados patogênicos de Xanthomonas axonopodis pv. phaseoli foi discutido geneticamente
    corecore