6 research outputs found

    Data underlying the publication: "Spatial dependency in abundance of Queen conch, Aliger gigas, in the Caribbean, indicates the importance of surveying deep-water distributions"

    No full text
    Evaluate how the spatial distribution of a heavily exploited marine gastropod (i.e., Queen conch) varies in response to a number of known biotic and abiotic variables within and between sites that vary in environmental conditions. A novel towed video system complemented belt transects to estimate adult queen conch densities throughout its depth range. Bayesian hierarchical spatial models (Integrated Nested Laplace approximations) modeled distribution patterns of adult conch and indicated that the general patchy distribution pattern and the lack of strong generic location over-crossing relationships between abiotic and biotic factors and adult conch abundance and distribution is likely to at least partly due to this spatial dependency and location-specific factors, that affect different parts of the conch life-history

    Interactive Effects of Rising Temperature and Nutrient Enrichment on Aquatic Plant Growth, Stoichiometry, and Palatability

    Get PDF
    The abundance and stoichiometry of aquatic plants are crucial for nutrient cycling and energy transfer in aquatic ecosystems. However, the interactive effects of multiple global environmental changes, including temperature rise and eutrophication, on aquatic plant stoichiometry and palatability remain largely unknown. Here, we hypothesized that (1) plant growth rates increase faster with rising temperature in nutrient-rich than nutrient-poor sediments; (2) plant carbon (C): nutrient ratios [nitrogen (N) and phosphorus (P)] respond differently to rising temperatures at contrasting nutrient conditions of the sediment; (3) external nutrient loading to the water column limits the growth of plants and decreases plant C:nutrient ratios; and that (4) changes in plant stoichiometry affect plant palatability. We used the common rooted submerged plant Vallisneria spiralis as a model species to test the effects of temperature and nutrient availability in both the sediment and the water column on plant growth and stoichiometry in a full-factorial experiment. The results confirmed that plants grew faster in nutrient-rich than nutrient-poor sediments with rising temperature, whereas external nutrient loading decreased the growth of plants due to competition by algae. The plant C: N and C: P ratios responded differently at different nutrient conditions to rising temperature. Rising temperature increased the metabolic rates of organisms, increased the nutrient availability in the sediment and enhanced plant growth. Plant growth was limited by a shortage of N in the nutrient-poor sediment and in the treatment with external nutrient loading to the water column, as a consequence, the limited plant growth caused an accumulation of P in the plants. Therefore, the effects of temperature on aquatic plant C:nutrient ratios did not only depend on the availability of the specific nutrients in the environment, but also on plant growth, which could result in either increased, unaltered or decreased plant C:nutrient ratios in response to temperature rise. Plant feeding trial assays with the generalist consumer Lymnaea stagnalis (Gastropoda) did not show effects of temperature or nutrient treatments on plant consumption rates. Overall, our results implicate that warming and eutrophication might interactively affect plant abundance and plant stoichiometry, and therefore influence nutrient cycling in aquatic ecosystems

    Interactive Effects of Rising Temperature and Nutrient Enrichment on Aquatic Plant Growth, Stoichiometry, and Palatability

    Get PDF
    The abundance and stoichiometry of aquatic plants are crucial for nutrient cycling and energy transfer in aquatic ecosystems. However, the interactive effects of multiple global environmental changes, including temperature rise and eutrophication, on aquatic plant stoichiometry and palatability remain largely unknown. Here, we hypothesized that (1) plant growth rates increase faster with rising temperature in nutrient-rich than nutrient-poor sediments; (2) plant carbon (C): nutrient ratios [nitrogen (N) and phosphorus (P)] respond differently to rising temperatures at contrasting nutrient conditions of the sediment; (3) external nutrient loading to the water column limits the growth of plants and decreases plant C:nutrient ratios; and that (4) changes in plant stoichiometry affect plant palatability. We used the common rooted submerged plant Vallisneria spiralis as a model species to test the effects of temperature and nutrient availability in both the sediment and the water column on plant growth and stoichiometry in a full-factorial experiment. The results confirmed that plants grew faster in nutrient-rich than nutrient-poor sediments with rising temperature, whereas external nutrient loading decreased the growth of plants due to competition by algae. The plant C: N and C: P ratios responded differently at different nutrient conditions to rising temperature. Rising temperature increased the metabolic rates of organisms, increased the nutrient availability in the sediment and enhanced plant growth. Plant growth was limited by a shortage of N in the nutrient-poor sediment and in the treatment with external nutrient loading to the water column, as a consequence, the limited plant growth caused an accumulation of P in the plants. Therefore, the effects of temperature on aquatic plant C:nutrient ratios did not only depend on the availability of the specific nutrients in the environment, but also on plant growth, which could result in either increased, unaltered or decreased plant C:nutrient ratios in response to temperature rise. Plant feeding trial assays with the generalist consumer Lymnaea stagnalis (Gastropoda) did not show effects of temperature or nutrient treatments on plant consumption rates. Overall, our results implicate that warming and eutrophication might interactively affect plant abundance and plant stoichiometry, and therefore influence nutrient cycling in aquatic ecosystems.</p

    Fish assemblages of three common artificial reef designs during early colonization

    No full text
    In this study, we compared the early fish colonization of three types of artificial reefs deployed in the coastal waters of Saba and St Eustatius in the Caribbean: reef balls®, layered cakes and piles of locally obtained basaltic rock. As an indicator of performance, three fish assemblage parameters (abundance, biomass, species richness) were measured using underwater visual censuses at 11 months post-deployment and 4 months after restoration from hurricane damage. All artificial reef plots showed higher values for fish abundance, biomass and species richness than control plots covered by bare sand, which shows that artificial reefs can locally enhance the fish assemblage. However, the effect differed among artificial reef plots. Fish abundance was 3.8 times higher on thelayered cake plots compared to the reef ball plots, while fish biomass was 4.6 times higher. Rock pile plots had intermediate values. Species richness did not differ significantly among different artificial reef plots. Threedimensionalmodelling revealed that layered cakes had a smaller gross volume, shelter volume and total surface area than reef balls. The availability of multiple small shelters in the layered cake design appeared to be more relevant than other physical parameters, as the layered cake plots had higher fish abundance than the reef balls plots. We concluded that on Saba and St. Eustatius, layered cake plots performed better than reef ball plots after one year of colonization. Rock pile plots, made of local volcanic rock, showed an intermediate performance, andwere 4–10 times cheaper to construct. If observed differences are consistent with other locations and persist allocated to deploy artificial reef structures with a higher shelter density
    corecore