27 research outputs found

    Mechanisms of selenomethionine developmental toxicity and the impacts of combined hypersaline conditions on Japanese medaka (Oryzias latipes).

    Get PDF
    Selenium (Se) is an essential micronutrient that can cause embryotoxicty at levels 7-30 times above essential concentrations. Exposure to hypersaline conditions and 50 μM selenomethionine (SeMet) decreased embryo hatch and depleted glutathione in Japanese medaka embryos without affecting Se accumulation. To better understand the impacts of nonchemical stressors on developmental toxicity of Se in fish, several adverse outcome pathways were evaluated in the Japanese medaka (Oryzias latipes). We treated medaka embryos at 12 h post fertilization with 50 μM SeMet for 12 hours in freshwater or in 13 ppth hypersalinity and evaluated the contributions of oxidative stress, the unfolded protein response and apoptosis to reduced hatch. Exposure to SeMet and hypersalinity decreased embryo hatch to 3.7% ± 1.95, and induced teratogenesis in 100% ± 0 of hatched embryos. In contrast, treatments of freshwater, saltwater, and SeMet in freshwater resulted in 89.8% ± 3.91-86.7% ± 3.87 hatch, and no significant increase in deformities. We found no significant differences in lipid peroxidation, indicating that oxidative stress may not be responsible for the observed toxicity in embryos at this time point (24 h). Although significant changes in apoptosis were not observed, we witnessed up to 100 fold increases in transcripts of the endoplasmic reticulum (ER) chaperone, immunoglobulin binding protein (BiP) and trends toward increasing downstream signals, activating transcription factor 4 (ATF4) and ATF6 indicating potential contributions of the unfolded protein response to the effects of SeMet and hypersaline conditions. These data indicate that multiple adverse outcome pathways may be responsible for the developmental toxicity of Se and salinity, and these pathways may be time dependent

    Tris(1,3-dichloro-2-propyl) phosphate disrupts dorsoventral patterning in zebrafish embryos.

    Get PDF
    Tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) is a high-production volume organophosphate flame retardant widely used within the United States. Within zebrafish, initiation of TDCIPP exposure at 0.75 h post-fertilization (hpf) results in genome-wide alterations in methylation during cleavage (2 hpf) as well as epiboly delay or arrest (at higher concentrations) during late-blastula and early-gastrula (4-6 hpf). To determine whether these TDCIPP-induced effects were associated with impacts on the transcriptome, embryos were exposed to vehicle (0.1% DMSO) or 2 µM TDCIPP from 0.75 hpf to 6 hpf, and total RNA was extracted from triplicate embryo pools per treatment and hybridized onto duplicate Affymetrix Zebrafish Gene 1.0 ST Arrays per RNA sample. Based on transcriptome-wide profiling, TDCIPP resulted in a significant impact on biological processes involved in dorsoventral patterning and bone morphogenetic protein (BMP) signaling. Consistent with these responses, TDCIPP exposure also resulted in strongly dorsalized embryos by 24 hpf-a phenotype that mimicked the effects of dorsomorphin, a potent and selective BMP inhibitor. Moreover, the majority of dorsalized embryos were preceded by epiboly arrest at 6 hpf. Our microarray data also revealed that the expression of sizzled (szl)-a gene encoding a secreted Frizzled-related protein that limits BMP signaling-was significantly decreased by nearly 4-fold at 6 hpf. Therefore, we used a splice-blocking morpholino to test the hypothesis that knockdown of szl phenocopies TDCIPP-induced delays in epiboly progression. Interestingly, contrary to our hypothesis, injection of szl MOs did not affect epiboly progression but, similar to chordin (chd) morphants, resulted in mildly ventralized embryos by 24 hpf. Overall, our findings suggest that TDCIPP-induced epiboly delay may not be driven by decreased szl expression, and that TDCIPP-induced dorsalization may-similar to dorsomorphin-be due to interference with BMP signaling during early zebrafish development

    Morphometric analysis of olfactory organ and telencephalon in maturing and mature migrants of Caspian lamprey (Caspiomyzon wagneri, Kessler 1870)

    Get PDF
    This study was conducted to provide a detailed information about changes of the olfactory organ and telencephalon morphology in spring and fall spawning run maturing and mature Caspian lamprey, Caspiomyzon wagneri, in the Shirud River, Sothern Caspian Sea basin, Iran. A total of 71 maturing and mature fish were collected during their spawning migration. The results showed that the thickness of the olfactory epithelium and the density of ciliated olfactory receptor cells (ORC) were lower in mature migrants. In addition, the nasal cavity, relative weight of olfactory organ and relative telecephalon area in mature migrants were larger indicating its more sensitivity to external queues. Based on the results, the olfactory organ and telencephalon of maturing migrants of Caspian lamprey have not developed completely and needs a period of rest in the river to its full development for spawning

    Maternal haemoglobin levels in pregnancy and child DNA methylation : a study in the pregnancy and childhood epigenetics consortium

    Get PDF
    Altered maternal haemoglobin levels during pregnancy are associated with pre-clinical and clinical conditions affecting the fetus. Evidence from animal models suggests that these associations may be partially explained by differential DNA methylation in the newborn with possible long-term consequences. To test this in humans, we meta-analyzed the epigenome-wide associations of maternal haemoglobin levels during pregnancy with offspring DNA methylation in 3,967 newborn cord blood and 1,534 children and 1,962 adolescent whole-blood samples derived from 10 cohorts. DNA methylation was measured using Illumina Infinium Methylation 450K or MethylationEPIC arrays covering 450,000 and 850,000 methylation sites, respectively. There was no statistical support for the association of maternal haemoglobin levels with offspring DNA methylation either at individual methylation sites or clustered in regions. For most participants, maternal haemoglobin levels were within the normal range in the current study, whereas adverse perinatal outcomes often arise at the extremes. Thus, this study does not rule out the possibility that associations with offspring DNA methylation might be seen in studies with more extreme maternal haemoglobin levels.Peer reviewe

    Maternal haemoglobin levels in pregnancy and child DNA methylation: a study in the pregnancy and childhood epigenetics consortium

    Get PDF
    Altered maternal haemoglobin levels during pregnancy are associated with pre-clinical and clinical conditions affecting the fetus. Evidence from animal models suggests that these associations may be partially explained by differential DNA methylation in the newborn with possible long-term consequences. To test this in humans, we meta-analyzed the epigenome-wide associations of maternal haemoglobin levels during pregnancy with offspring DNA methylation in 3,967 newborn cord blood and 1,534 children and 1,962 adolescent whole-blood samples derived from 10 cohorts. DNA methylation was measured using Illumina Infinium Methylation 450K or MethylationEPIC arrays covering 450,000 and 850,000 methylation sites, respectively. There was no statistical support for the association of maternal haemoglobin levels with offspring DNA methylation either at individual methylation sites or clustered in regions. For most participants, maternal haemoglobin levels were within the normal range in the current study, whereas adverse perinatal outcomes often arise at the extremes. Thus, this study does not rule out the possibility that associations with offspring DNA methylation might be seen in studies with more extreme maternal haemoglobin levels

    Mechanisms of Selenomethionine and Hypersaline Developmental Toxicity in Japanese Medaka (Oryzias latipes)

    No full text
    Selenium toxicity to oviparous vertebrates is often attributed to selenomethionine (SeMet), which can maternally transfer to developing embryos. The mechanism of SeMet toxicity is unclear. Furthermore, salinity of fresh waterways is increasing due to climate change and anthropogenic disturbance. Hypersalinity can potentiate SeMet toxicity to Japanese medaka (Oryzias latipes). The current study aimed to characterize the molecular mechanisms of SeMet and hypersalinity at sensitive developmental stages. Developmental toxicity of seawater was compared to desalination brine (DSB) and artificial water based on the San Joaquin River (SJR), CA. DSB toxicity was equal to seawater, while SJR water was the most toxic to embryos and larvae. Flavin-containing monooxygenases (FMOs) initiate SeMet toxicity and are induced by hypersalinity. However, developmental expression and regulation of FMOs in fish are unknown. Five putative medaka FMOs were identified with differential developmental mRNA expression patterns: two FMOs increased during mid-organogenesis; two FMOs decreased beginning at early organogenesis; and one FMO remained constant. Promoter analysis indicated regulation by developmental factors and the UPR. Treatments with UPR-inducer tunicamycin increased expression of two FMOs. In contrast, dithiothreitol inhibited the UPR and three FMOs, suggesting that FMOs are differentially regulated by the UPR. The developmental stage sensitivity of medaka embryos to SeMet was investigated in freshwater and SJR water. Stages 9-25 were most sensitive to SeMet; and hypersalinity potentiated SeMet toxicity during the onset of liver organogenesis, osmoregulation, and chondrogenesis. The mechanisms behind the potentiation of SeMet toxicity by hypersalinity indicated no involvement of oxidative stress or apoptosis; however, results suggested a role for the unfolded protein response (UPR) when animals were treated with 50μM SeMet for 12hrs. Mechanisms of SeMet-induced spinal deformities (5μM and 2.5μM for 24hrs) were further elucidated using imaging methods and showed increased oxidative stress and apoptosis in tails of embryos with spinal malformations. Gene expression analysis demonstrated a UPR activation pattern unique from UPR positive controls. Furthermore, these effects prematurely repressed chondrogenesis and induced osteogenesis. Overall, results will be useful for the risk assessment of hypersalinity and Se under hypersaline conditions; and inform studies on developmental mechanisms of toxicity
    corecore