11 research outputs found

    Selective flotation separation of chalcopyrite and sphalerite by thermal pretreatment under air atmosphere

    No full text
    Thermal pretreatment was performed to enhance the flotation separation of chalcopyrite and sphalerite under the air atmosphere for the first time. Microflotation experiment showed that the floatability of chalcopyrite vanished after thermal pretreatment at above 170℃. By contrast, the floatability of sphalerite was well maintained with a flotation recovery of 90%. In artificial mixed mineral flotation experiments, the separation of sphalerite and chalcopyrite was successfully realized by thermal pretreatment. Results of Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy analyses indicated that the chalcopyrite surface was oxidized dramatically at 170℃, and hydrophilic species such as sulfate (SO42SO_4^{2-}), oxides (CuOCuO and Fe2O3Fe_2O_3), and hydroxyl species (Fe(OH)3Fe(OH)_3) were formed on the surface. Hence, the adsorption of potassium butyl xanthate on chalcopyrite decreased significantly after thermal pretreatment. The reason for the higher oxidation speed of chalcopyrite than that of sphalerite was also analyzed

    All-dielectric metasurfaces with high Q-factor Fano resonances enabling multi-scenario sensing

    No full text
    We propose and numerically demonstrate high Q-factor sensors based on all-dielectric metasurfaces, which are very sensitive to the change of the refractive index of the surrounding media and the incident angle. By using the light incident angular scanning method, the all-dielectric metasurface based on symmetric tetramer can act as an excellent sensing platform for trace-amount molecules such as protein A/G, 2, 4-DNT, and 2D material graphene with huge absorbance enhancement in the mid-infrared broadband spectrums. The results reveal that envelope of absorbance amplitudes is in good agreement with the vibrational mode of molecules, and absorbance enhancement factors reach as high as 10 dB in the mid-infrared wavelength range from 5.75 to 6.80 μm. To further increase the Q-factor of the resonances, the all-dielectric metasurface based on asymmetric tetramer is investigated. This asymmetric structure can induce toroidal and magnetic dipoles governed by quasi-BIC to produce multi-extremely narrow linewidth Fano resonances, and the maximum sensitivity reaches up to 1.43 μm/RIU. Therefore, the proposed all-dielectric metasurface demonstrates highly enhanced performance in refractive index and chemical information sensing for trace-amount biomolecules, which inspires the development of new high-sensitivity refractive index sensors for the nondestructive identification in the mid-infrared regime

    Enhancing flotation of smithsonite by using 1,3,5-Triazinane-2,4,6-trithione as sulfidation

    No full text
    1,3,5-Triazinane-2,4,6-trithione (TMT) was used for the first time as a sulfidation agent in the flotation of smithsonite. Results showed that 80.5% recovery rate could be obtained in the presence of TMT (5×105mol(5 × 10^{-5} mol / L)L) and butyl xanthate (5×104mol(5 × 10^{-4} mol / L)L). However, the recovery rate was only 59.4% when sodium sulfide (5×105mol(5 × 10^{-5} mol / L)L) was used. Micro-flotation test and contact angle measurement showed that TMT activation was better than sodium sulfide activation. Besides, the contact angle increased from 32.44° (untreated) to 89.58° (treated with TMT), which was significantly higher than 50.2° (treated with sodium sulfide). Fourier Transform Infrared spectroscopy(FT-IR) and Zeta potential test showed the chemisorption of TMT on the smithsonite surface. The results of ICP spectral detection and solution chemistry calculation revealed that Zn3TMTZn_3TMT complex precipitates in the smithsonite pulp were formed on the mineral surface at pH 6.5. A hydrophobic film was also formed on the mineral surface after TMT treatment, and more adsorption sites were provided for butyl xanthate. Thus, the adsorption of collector was significantly enhanced

    Review on the Development and Utilization of Ionic Rare Earth Ore

    No full text
    Rare earth, with the reputation of “industrial vitamins”, has become a strategic key metal for industrial powers with increasingly significant industrial application value. As a unique rare earth resource, ionic rare earth ore (IREO) has the outstanding advantages of complete composition, rich resource reserves, low radioactivity, and high comprehensive utilization value. IREO is the main source of medium and heavy rare earth raw materials, which are in great demand all over the world. Since the discovery of IREO, it has attracted extensive attention. Scientists in China and the around world have carried out a lot of research and practical work and achieved a series of important breakthroughs. This paper introduces the discovery process, metallogenic causes, deposit characteristics, and the prospecting research progress of IREO, so as to deepen the understanding of the global distribution of ionic rare earth resources and the prospecting direction of ionic rare earth deposits. The leaching principle of IREO, the innovation of leaching process, the influencing factors and technological development of in situ leaching process, and the technical adaptability of in situ leaching process are reviewed. The development of leachate purification and rare earth extraction technology is summarized. We aim to provide guidance for the industrial development of IREO through the above review analysis. Additionally, the problems existing in the development of IREO are pointed out from the aspects of technology, economy, and the environment. Ultimately, a series of suggestions are put forward, such as the development of ammonium free extraction technology in the whole exploitation process of in situ leaching and leachate purification and rare earth precipitation, research on enhancing of seepage and mass transfer process, and research on the development of new technologies for impurity removal of leachate and extraction of rare earth, so as to promote the development of green and efficient exploitation new technologies and sustainable development of ionic rare earth ore
    corecore