2,673 research outputs found

    Experimental rate coefficients for collisional excitation of lithium-like ions

    Get PDF
    Collisional excitation rates for lithium-like ions derived from diagnosed plasma produced in theta pinch device and line intensities emitted by these ion

    Flowing gas, non-nuclear experiments on the gas core reactor

    Get PDF
    Flow tests were conducted on models of the gas core (cavity) reactor. Variations in cavity wall and injection configurations were aimed at establishing flow patterns that give a maximum of the nuclear criticality eigenvalue. Correlation with the nuclear effect was made using multigroup diffusion theory normalized by previous benchmark critical experiments. Air was used to simulate the hydrogen propellant in the flow tests, and smoked air, argon, or freon to simulate the central nuclear fuel gas. All tests were run in the down-firing direction so that gravitational effects simulated the acceleration effect of a rocket. Results show that acceptable flow patterns with high volume fraction for the simulated nuclear fuel gas and high flow rate ratios of propellant to fuel can be obtained. Using a point injector for the fuel, good flow patterns are obtained by directing the outer gas at high velocity along the cavity wall, using louvered or oblique-angle-honeycomb injection schemes

    Simplified models of electromagnetic and gravitational radiation damping

    Get PDF
    In previous work the authors analysed the global properties of an approximate model of radiation damping for charged particles. This work is put into context and related to the original motivation of understanding approximations used in the study of gravitational radiation damping. It is examined to what extent the results obtained previously depend on the particular model chosen. Comparisons are made with other models for gravitational and electromagnetic fields. The relation of the kinetic model for which theorems were proved to certain many-particle models with radiation damping is exhibited

    A collage-based approach to solving inverse problems for second-order nonlinear hyperbolic PDEs

    Get PDF
    A goal of many inverse problems is to find unknown parameter values, \u3bb 08 \u39b, so that the given observed data utrue agrees well with the solution data produced using these parameters u\u3bb. Unfortunately finding u\u3bb in terms of the parameters of the problem may be a difficult or even impossible task. Further, the objective function may be a complicated function of the parameters \u3bb 08 \u39b and may require complex minimization techniques. In recent literature, the collage coding approach to solving inverse problems has emerged. This approach avoids the aforementioned difficulties by bounding the approximation error above by a more readily minimizable distance, thus making the approximation error small. The first of these methods was applied to first-order ordinary differential equations and gets its name from the \u201ccollage theorem\u201d used in this setting to achieve an upperbound on the approximation error. A number of related ODE problems have been solved using this method and extensions thereof. More recently, collage-based methods for solving linear and nonlinear elliptic partial differential equations have been developed. In this paper we establish a collage-based method for solving inverse problems for nonlinear hyperbolic PDEs. We develop the necessary background material, discuss the complications introduced by the presence of time-dependence, establish sufficient conditions for using the collage-based approach in this setting and present examples of the theory in practice

    Inverse Problems via the “Generalized Collage Theorem” for Vector-Valued Lax-Milgram-Based Variational Problems

    Get PDF
    We present an extended version of the Generalized Collage Theorem to deal with inverse problems for vector-valued Lax-Milgram systems. Numerical examples show how the method works in practical cases

    The Geoff Egan Memorial Lecture 2011. Artefacts, art and artifice: reconsidering iconographic sources for archaeological objects in early modern Europe

    Get PDF
    A first systematic analysis of historic domestic material culture depicted in contemporaneous Western painting and prints, c.1400-1800. Drawing on an extensive data set, the paper proposes to methodologies and hermeneutics for historical analysis and archaeological correspondence

    The formation of black holes in spherically symmetric gravitational collapse

    Full text link
    We consider the spherically symmetric, asymptotically flat Einstein-Vlasov system. We find explicit conditions on the initial data, with ADM mass M, such that the resulting spacetime has the following properties: there is a family of radially outgoing null geodesics where the area radius r along each geodesic is bounded by 2M, the timelike lines r=c∈[0,2M]r=c\in [0,2M] are incomplete, and for r>2M the metric converges asymptotically to the Schwarzschild metric with mass M. The initial data that we construct guarantee the formation of a black hole in the evolution. We also give examples of such initial data with the additional property that the solutions exist for all r≄0r\geq 0 and all Schwarzschild time, i.e., we obtain global existence in Schwarzschild coordinates in situations where the initial data are not small. Some of our results are also established for the Einstein equations coupled to a general matter model characterized by conditions on the matter quantities.Comment: 36 pages. A corollary on global existence in Schwarzschild coordinates for data which are not small is added together with minor modification

    An inverse problem for a system of steady-state reaction-diffusion equations on a porous domain using a collage-based approach

    Get PDF
    We consider an inverse problem for a system of steady-state reaction-diffusions acting on a perforated domain. We establish several results that connect the parameter values for the problem on the perforated domain with the corresponding problem on the related unperforated of solid domain. This opens the possibility of estimating a solution to the inverse problem on the perforated domain by instead working with the easier-to-solve inverse problem on the solid domain. We illustrate the results with an example

    Global existence for the spherically symmetric Einstein-Vlasov system with outgoing matter

    Get PDF
    We prove a new global existence result for the asymptotically flat, spherically symmetric Einstein-Vlasov system which describes in the framework of general relativity an ensemble of particles which interact by gravity. The data are such that initially all the particles are moving radially outward and that this property can be bootstrapped. The resulting non-vacuum spacetime is future geodesically complete.Comment: 16 page
    • 

    corecore