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Abstract. We consider an inverse problem for a system of steady-state reaction-diffusions acting on a
perforated domain. We establish several results that connect the parameter values for the problem on the
perforated domain with the corresponding problem on the related unperforated of solid domain. This opens
the possibility of estimating a solution to the inverse problem on the perforated domain by instead working
with the easier-to-solve inverse problem on the solid domain. We illustrate the results with an example.

1. Introduction
In the context of the subject work, the “direct problem” involves determining the solution to a
completely prescribed two-dimensional system of steady-state reaction-diffusion equations, including
known boundary conditions. On the other hand, the “inverse problem” involves estimating the values of
(perhaps only some of the) parameters of the system given some information about the solution, perhaps
observational data values.

In the next section, we present a summary of the collage method for solving inverse inverse problems
for variational equations [5] and related systems [4]. Although the frameworks for the single equation
and system cases have significant theoretical differences, both settings lead to a minimization problem
for a function of the parameters λ one desires to estimate. Letting u denote the observed solution, perhaps
an interpolation of observational data values, we must solve

min
λ∈Λ F(u, λ).

In fact, in the case that the parameters λ appear linearly in the variational equation/system, upon
approximating the problem in an appropriate finite-dimensional subspace, the function F is a quadratic
function of the parameters and once F is built its minimization is quite straightforward.

In this paper, we wish to consider inverse problems on perforated or porous domains. A porous
medium or perforated domain is a material characterized by a partitioning of the total volume into a
solid portion often called the “matrix” and a pore space usually referred to as “holes” that can be either
materials different from that of the matrix or real physical holes. When formulating differential equations
over porous media, the term “porous” implies that the state equation is written in the matrix only, while
boundary conditions should be imposed on the whole boundary of the matrix, including the boundary

http://creativecommons.org/licenses/by/3.0
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of the holes. Porous media can be found in many areas of applied sciences and engineering including
petroleum engineering, chemical engineering, civil engineering, aerospace engineering, soil science,
geology, material science, and many more areas.

Since porosity in materials can take different forms and appear in varying degrees, solving differential
equations over porous media is often a complicated task and the holes’ size and their distribution play an
important role in its characterization. Furthermore numerical simulations over perforated domains need
a very fine discretization mesh which often requires a significant computational time. The mathematical
theory of differential equations on perforated domains is usually based on the theory of “homogenization”
in which heterogeneous material is replaced by a fictitious homogeneous one. Of course this implies the
need of convergence results linking together the model on a perforated domain and on the associated
homogeneous one. In the case of porous media, or heterogeneous media in general, characterizing the
properties of the material is a tricky process and can be done on different levels, mainly the microscopic
and macroscopic scales, where the microscopic scale describes the heterogeneities and the macroscopic
scale describes the global behavior of the composite.

In [3], two related problems for a single steady-state reaction-diffusion, problem (Pε) on a perforated
domain Ωε and problem (P) on the related solid domain Ω are considered:

{ ∇ · (Kλ(x, y)∇u(x, y)) = f λ(x, y), in Ωε,
u(x, y) = 0, on ∂Ωε,

(Pε)

and { ∇ · (Kλ(x, y)∇u(x, y)) = f λ(x, y), in Ω,
u(x, y) = 0, on ∂Ω. (P)

The inverse problem of interest for (Pε) is to estimate λ given observational data for a solution. The
paper establishes that a relationship between parameter values λ in the two problems: one can use the data
from the solution to (Pε) in the inverse problem for (P) to estimate λ, with the connection strengthening
as ε decreases.

In many applications to material science it happens that data are collected without a priori knowledge
of the geometry of the domain: In these situations is much simpler to assume the hypothesis of solid
domain and use it to determine an estimation of the unknown parameters of the model.

In the third section, we build on these preceding results in developing a solution approach for
the inverse problem for a system of steady-state reaction-diffusion equations on a perforated domain.
Following that, in the final section we present an example to illustrate the method.

2. The Collage Method for Variational Equations
Consider the variational equation associated with a single elliptic equation,

a(u, v) = φ(v), v ∈ H, (1)

where φ and a are linear and bilinear maps, respectively, both defined on a Hilbert space H. We denote by
〈·, ·〉 the inner product in H, ‖u‖2 = 〈u, u〉 and d(u, v) = ‖u−v‖, for all u, v ∈ H. Typically H = H1

0(Ω), that
is the space of all L2(Ω) functions that possess a weak derivative in L2(Ω). The existence and uniqueness
of solutions to this kind of equation are provided by the classical Lax-Milgram representation theorem,
which requires that the bilinear form satisfy coercivity and boundedness properties and the linear map
be bounded.

The following theorem proves particularly useful for treating a related inverse problem of
approximating a target element u by a solution of a family of operators aλ and φλ, satisfying (1) for
each λ ∈ Λ.



3

1234567890 ‘’“”

9th International Conference on Inverse Problems in Engineering (ICIPE) IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 1047 (2018) 012005  doi :10.1088/1742-6596/1047/1/012005

Theorem 1. (Generalized Collage Theorem) [5] For all λ ∈ Λ, suppose that aλ : Λ × H × H → R is a
family of bilinear forms and φλ : Λ × H → R is a family of linear functionals, satisfying

aλ(u, u) ≥ mλ‖u‖2 ∀u ∈ H (coercivity)
aλ(u, v) ≤ Mλ‖u‖‖v‖ ∀u, v ∈ H
φλ(u) ≤ μλ‖u‖ ∀u ∈ H,

for some positive constants mλ, Mλ, and μλ. Let uλ denote the solution of the equation aλ(u, v) = φλ(v)
for all v ∈ H as guaranteed by the Lax-Milgram theorem. Then, given a target element u ∈ H,

‖u − uλ‖ ≤ 1
mλ

F(u, λ), (2)

where
F(u, λ) =

∥∥∥∥aλ(u, ·) − (φλ)∗
∥∥∥∥ . (3)

If infλ∈Λmλ ≥ m > 0 then the inverse problem can be reduced to the minimization of the function
F(u, λ) on Λ, that is,

min
λ∈Λ F(u, λ), (4)

and we refer to this minimization as a “generalized collage method.” To finite dimensionalize the
problem, let Vn = 〈e1, e2, . . . , en〉 be the finite dimensional vector space generated by ei, so that Vn ⊂ H.
Given a target u ∈ H, let Pnu be the projection of u on the space Vn. We approximate the true error by
‖Pnu−uλ‖, noting that uλ in this expression is in general not the same as the uλ in the infinite dimensional
problem. We can establish that

‖Pnu − uλ‖ ≤ R
m

∑
i

∣∣∣aλ(u, ei) − φ(ei)
∣∣∣2 ,

where R is a constant, leading to the minimization problem

inf
λ∈Λ Fn(u, λ), where Fn(u, λ) =

n∑
i=1

∣∣∣aλ(u, ei) − φλ(ei)
∣∣∣2 . (5)

This approach has been extended in [4] to the case of linear systems,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
aλ1(u, v1) = φ1(v1)

...
aλN(u, vN) = φN(vN)

, ∀ v1, . . . , vN ∈ H,

where u = (u1, . . . , uN), to arrive at

F(u, λ) = max
1≤k≤N

∥∥∥∥aλk (u, ·) −
(
φλk

)∗∥∥∥∥ = max
1≤k≤N

sup
‖v‖=1,v∈H

∣∣∣aλk (u, v) − φλk (v)
∣∣∣ . (6)

In this setting,

‖u − uλ‖ ≤ 1
mλ

F(u, λ),

where mλ = mink mλk .
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3. A System of Steady-State Reaction-Diffusion Equations on Perforated and Unperforated
Domains
Given a compact and convex set Ω, we denote by ΩB the collection of circular holes ∪m

j=1B(x j, ε j) where
x j ∈ Ω, ε j are strictly positive numbers, and the holes B(x j, ε j) are nonoverlapping and lie strictly in the
interior of Ω. We let ε = max j ε j. We denote by Ωε the closure of the set Ω\ΩB. In this section, we will
set H = H1

0(Ω) and Hε = H1
0(Ωε). We consider the linear system

(P): Find u = (u1, ..., uN) ∈ HN that satisfies

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
aλ1(u, ·) =

(
ϕλ1

)∗
...

aλN(u, ·) =
(
ϕλN

)∗
where λ ∈ Λ denotes some parameters of the functionals, and, on the domain with holes, the
corresponding system

(Pε): Find u = (u1, ..., uN) ∈ (Hε)N that satisfies

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
aλ1,ε(u, ·) =

(
ϕλ1,ε

)∗
...

aλN,ε(u, ·) =
(
ϕλN,ε

)∗
Our goal is to address the inverse problem: Given observational data for a solution to (Pε), estimate λ.
Our approach is to use the data in (P) to estimate λ by establishing connections between the parameters
λ in (P) and (Pε) for ε small.

As any function in H1
0(Ωε) can be extended to be zero over the holes, it is trivial to prove that H1

0(Ωε)
can be embedded in H1

0(Ω). Let u = (u1, ..., uN) and Pεuk be the projection of uk ∈ H1
0(Ωε) onto H1

0(Ω),
k = 1, ...,N. It is easy to prove that

‖uk − Pεuk‖H1
0 (Ω) → 0 whenever ε→ 0.

When Neumann boundary conditions are considered, it is still possible to extend a function in H1
0(Ωε) to

a function of H1
0(Ω): these extension conditions are well studied (see [7]) and they typically hold when

the domain Ω has a particular structure. In any case, it holds for a wide class of disperse media, that is,
media consisting of two media that do not mix.

We assume that there exist three strictly positive constants m, M, and μ such that

aλ,εk (u, u) ≥ m‖u‖2 ∀u ∈ Hε

aλ,εk (u, v) ≤ M‖u‖‖v‖ ∀u, v ∈ Hε

φλ,εk (u) ≤ μ‖u‖ ∀u ∈ Hε,

Then by the Lax-Milgram type theorem in [4], problem (P) has a unique solution uλ for each λ ∈ Λ
and problem (Pε) has a unique solution uλε and for each positive ε and each λ ∈ Λ.

In the following results, we establish relationships between (P) and (Pε). For each u ∈ (H1
0(Ωε))N , let

us introduce the function
Fε(u, λ) = max

1≤k≤N

∥∥∥∥aλ,εk (u, ·) −
(
yλ,εk

)∗∥∥∥∥ . (7)

associated with problem (Pε).

Proposition 1. The function F(u, λ) is Lipschitz with Lipschitz constant equal to M.

Proof. Computing, we have:
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F(u, λ) = max1≤k≤N
∥∥∥aλk (u, ·) − (ϕλk )∗

∥∥∥
= max1≤k≤N sup‖v‖=1 |aλk (u, v) − ϕλk (v)|
= max1≤k≤N sup‖v‖=1 |aλk (u, v) − aλk (w, v) + aλk (w, v) − ϕλk (v)|
≤ max1≤k≤N sup‖v‖=1 |aλk (u − w, v)| + |aλk (w, v) − ϕλk (v)|
≤ M‖u − w‖ + F(w, λ)

which easily implies that
|F(u, λ) − F(w, λ)| ≤ M‖u − w‖.

�

In what follows, for each u ∈ (H1
0(Ωε))N let us Pεu = (Pεu1, . . . , PεuN).

Proposition 2. The following inequality holds:

‖Pεu − uλε‖ ≤
F(u, λ)

m
+

M
m
‖Pεu − u‖

Proof. Computing, we have:

‖Pεu − uλε‖ ≤ 1
m Fε(Pεu, λ)

≤ 1
m F(Pεu, λ)

≤ 1
m [F(u, λ) + M‖Pεu − u‖]

�

Proposition 3. The exists a constant C(ε, u), which depends only on ε and u, such that the following
inequality holds:

F(Pεu, λ) ≤ Fε(Pεu, λ) +C(ε, u) sup
‖v‖=1

‖Pεv − v‖

Proof. Easy calculations imply that:

F(Pεu, λ) = maxk=1...N sup‖v‖=1 |aλk (Pεu, v) − φλk (v)|
≤ maxk=1...N sup‖v‖=1 |aλk (Pεu, v) − aλk (Pεu, Pεv)|
+ maxk=1...N sup‖v‖=1,v∈HN

ε
|aλk (Pεu, v) − φλk (v)|

+ maxk=1...N sup‖v‖=1 |φλk (Pεv) − φλk (v)|
≤ sup‖v‖=1 M‖Pεu‖‖Pεv − v‖
+ Fε(Pεu, λ) + μ sup‖v‖=1 ‖Pεv − v‖
≤ (M‖Pεu‖ + μ) sup‖v‖=1 ‖Pεv − v‖ + Fε(Pεu, λ)

= C(ε, u) sup‖v‖=1 ‖v − Pεv‖ + Fε(Pεu, λ)

�

Let us notice that the constant C(ε, u) = M‖Pεu‖+ μ converges to C(u) = M‖u‖+ μ whenever ε tends
to zero. The following proposition states a convergence theorem for the sequence of minimizers.
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Proposition 4. Let us suppose that, for each fixed u ∈ (H1
0(Ωε))N, F is lower continuous w.r.t. λ ∈ Λ. If

λεn = arg minλ∈Λ Fεn(Pεnu, λ), and λεn → λ∗ ∈ Λ then λ∗ = arg minλ∈Λ F(u, λ).

Proof. Computing, we have:

F(u, λ∗) ≤ lim infεn→0 F(u, λεn)

≤ lim infεn→0 F(Pεnu, λεn) + M‖Pεnu − u‖
≤ lim infεn→0 Fεn(Pεnu, λεn) +C(εn, u) sup‖v‖=1 ‖Pεnv − v‖ + M‖Pεnu − u‖
≤ lim infεn→0 Fεn(Pεnu, λεn) + C̃(εn, u)εn

≤ lim infεn→0 Fεn(Pεnu, λ) + C̃(εn, u)εn

≤ lim infεn→0 F(Pεnu, λ) + C̃(εn, u)εn

≤ lim infεn→0 F(u, λ) + C̃(εn, u)εn + M‖Pεnu − u‖ = F(u, λ)

for all λ ∈ Λ, which implies that λ∗ is a global minimizer. �

4. Examples
We consider the problem

− ∇ · (K1(x, y)∇u1) + b1u2 = f1(x, y) (8)
−∇ · (K2(x, y)∇u2) + b2u1 = f2(x, y) (9)

on Ωε, the perforated unit square, with N arbitrarily placed holes, and with uk = 0 on the boundary of
the square and ∂uk

∂n = 0 on the boundaries of the holes, k = 1, 2.
We consider the following inverse problem: given a target solution u = (u1, u2), f1, and f2 on Ωε,

estimate Kk and bk, k = 1, 2.
Following Proposition 4, we solve the associated inverse problem on Ω = [0, 1]2, the unit square with

no holes. We minimize the objective function F(u, λ), where λ is the vector of parameters defining Ki
and bi. The functions aλk and φλk in F are straightforward to construct: multiply (8) by v1 ∈ H1

0(Ω) and
(8) by v2 ∈ H1

0(Ω) and integrate over Ω. Using Green’s Identity on the left, we obtain

aλk (u, vk) = φλk (vk), k = 1, 2,

where

aλk (u, vk) =
∫
Ω

Kk∇uk · ∇vk dA

φλk (vk) =
∫
Ω

fkvk dA.

To finite dimensionalize the problem, we introduce n2 nodes, positioned at the points (xi, yi) =
(

i
n+1 ,

j
n+1

)
,

i, j = 1, 2, . . . , n, and we define the triangles

Di j+
n =

{
(x, y) : xi−1 ≤ x ≤ xi,

yi − yi−1

xi − xi−1
x + yi−1 ≤ y ≤ yi

}
, i, j = 1, . . . , n + 1,

and

Di j−
n =

{
(x, y) : xi−1 ≤ x ≤ xi, yi−1 ≤ y ≤ yi − yi−1

xi − xi−1
x + yi−1

}
, i, j = 1, . . . , n + 1.
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We will work with functions vk in

V1
n = {v ∈ C (Ω) : v is piecewise linear on Di j+

n and Di j−
n , i, j = 1, . . . , n + 1, and v = 0 on ∂Ω}.

A basis for V1
n consists of the n2 functions ei j(x, y) satisfying

ei j is piecewise linear and ei j(xk, yl) =

⎧⎪⎪⎨⎪⎪⎩
1 if (k, l) = (i, j)

0 if (k, l) � (i, j)
, i, j = 1, . . . , n.

Similar to [5] and [4], the problem we solve is

min
λ

2∑
k=1

n∑
i, j=1

(
aλk (u, ei j) − φλk (ei j)

)2
. (10)

In the examples that follow, we choose values for Ki, fi, and bi, i = 1, 2, solve the problem on the
perforated domain, and then sample the numerical solutions at the n2 nodes to produce observational
data. If a node lies inside one of the holes, we discard it. We produce a target solution u = (u1, u2) by
performing a least squares fit of the polynomial function (of degree L + 4)

w(x, y) = xy(1 − x)(1 − y)
L∑

j=0

k∑
i=0

ai jxiy j−i,

which satisfies the homogenous Dirichlet boundary conditions on ∂Ω, to each component. We then solve
the inverse problem, as outlined above, to obtain estimates of Ki and bi.

Example 1: We set K1(x, y) = 1 + 2x + 1
2 y, K2(x, y) = 1 + 1

4 x + 2y, b1 = 2, b2 = 1, f1(x, y) = x2 + y2,
and f2(x, y) = x+2y. We arbitrarily distribute 10 holes of various sizes inside Ω. The domain Ωε and the
level curves of the solution are presented in Figure 1. In the figure, the holes are numbered by increasing

(a) (b) (c)

Figure 1. (a) The unit square with 10 assorted holes. (b-c) Isotherms for numerical solutions u1 and u2,
respectively.

radius. In solving the problem, we set n = 9, L = 8,

K1(x, y) = λ1 + λ2x + λ3y, K1(x, y) = λ4 + λ5x + λ6y, b1 = λ7, and b2 = λ8.

Table 1 presents the results for 11 different choices of domain: we solve the problem with N holes,
N = 0, . . . , 10, each time using the first N holes, as numbered in Figure 1(a). It is instructive to visualize
the solutions as the number of holes changes; in Figure 2, we present the isotherms for several cases.
When comparing rows, it is important to note that the numerical solutions, and hence the target solutions,
change for each run. We see that most of the cases, the parameter values are recovered well. As the
number of holes grows, which corresponds to the larger holes being part of the problem, the recovered
values of the adsorption coefficients b1 and b2 become poorer.
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N = 9 N = 7

N = 5 N = 3

Figure 2. Isotherms for numerical solutions on the domain with N holes.

# holes λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8

10 0.9816 1.9292 0.4962 0.8718 0.3178 1.8689 2.4295 5.1526
9 1.0600 1.8997 0.4332 0.9746 0.2316 1.8578 2.1646 3.8523
8 1.0064 1.9819 0.5075 0.9927 0.2374 1.9967 2.0416 1.6407
7 1.0044 1.9972 0.4968 1.0178 0.2305 2.0013 1.9665 0.7470
6 1.0035 1.9995 0.4979 1.0089 0.2400 2.0039 1.9366 0.7560
5 1.0071 2.0002 0.4946 1.0099 0.2407 2.0035 1.8871 0.6711
4 0.9953 1.9999 0.5040 1.0041 0.2439 2.0012 2.0069 0.8857
3 0.9882 2.0055 0.5111 1.0006 0.2472 2.0085 2.0375 0.8906
2 0.9958 2.0067 0.5040 1.0029 0.2477 2.0075 1.9835 0.8333
1 0.9951 2.0060 0.5052 1.0034 0.2465 2.0083 1.9861 0.8213
0 0.9907 2.0084 0.5065 0.9985 0.2508 2.0056 2.0176 0.9427

true values 1.0000 2.0000 0.5000 1.0000 0.2500 2.0000 2.0000 1.0000

Table 1. Recovered parameter values, to 4 decimal places, for Example 1.

Example 2: We use the same true parameter values and position 10 circular holes in Ω, as in Example
1. This time, however, all of the holes have the same radius. As in Example 1, we set n = 9, L = 8, and
recover λi, i = 1, . . . , 8. Table 2 presents the results for 4 different radius values. As the radius decreases,
the accuracy of the recovery improves.

radius λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8

0.02 1.0403 1.9089 0.5002 1.0571 0.1616 1.9873 1.9242 0.5144
0.01 1.0124 1.9832 0.4972 1.0198 0.2241 2.0028 1.9278 0.6748
0.005 0.9961 2.0024 0.5045 1.0049 0.2433 2.0061 1.9906 0.8389
0.001 0.9908 2.0079 0.5065 0.9987 0.2505 2.0055 2.0195 0.9435

true values 1.0000 2.0000 0.5000 1.0000 0.2500 2.0000 2.0000 1.0000

Table 2. Recovered parameter values, to 4 decimal places, for Example 2.
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Figure 3 shows the numerical solutions’ isotherms for the different cases.

radius= 0.02 radius= 0.01

radius= 0.005 radius= 0.001

Figure 3. Isotherms for numerical solutions with different radius.
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