71 research outputs found

    Comparison of methods for sampling particulate emissions from tires under different test environments

    Get PDF
    Traffic-related emissions are strongly criticised by the public because they contribute to climate change and are classified as hazardous to health. Combustion engine emissions have been regulated by limit values for almost three decades. There is currently no legal limit for non-exhaust emissions, which include tire wear particle emissions and resuspension. As a result, the percentage of total vehicle emissions has risen continuously. Some of the particles emitted can be assigned to the size classes of particulate matter (≀10 ”m) and are therefore of particular relevance to human health. The literature describes a wide range of concepts for sampling and measuring tire wear particle emissions. Because of the limited number of studies, the mechanisms involved in on-road tests and their influence on the particle formation process, particle transport and the measuring ability can only be described incompletely. The aim of this study is to compare test bench and on-road tests and to assess the influence of selected parameters. The first part describes the processes of particle injection and particle distribution. Based on this, novel concepts for sampling and measurement in the laboratory and in the field are presented. The functionality and the mechanisms acting in each test environment are evaluated on the basis of selected test scenarios. For example, emissions from external sources, the condition of the road surface and the influence of the driver are identified as influencing factors. These analyzes are used to illustrate the complexity and limited reproducibility of on-road measurements, which must be taken into account for future regulations

    Analysis of TRWP particle distribution in urban and suburban landscapes, connecting real road measurements with particle distribution simulation

    Get PDF
    This article deals with methods and measurements related to environmental pollution and analysis of particle distribution in urban and suburban landscapes. Therefore, an already-invented sampling method for tyre road wear particles (TRWP) was used to capture online emission factors from the road. The collected particles were analysed according to their size distribution, for use as an input for particle distribution simulations. The simulation model was a main traffic intersection, because of the high vehicle dynamic related to the high density of start–stop manoeuvres. To compare the simulation results (particle mass (PM) and particle number (PN)) with real-world emissions, measuring points were defined and analysed over a measuring time of 8 h during the day. Afterwards, the collected particles were analysed in terms of particle shape, appearance and chemical composition, to identify the distribution and their place of origin. As a result of the investigation, the appearance of the particles showed a good correlation to the vehicle dynamics, even though there were a lot of background influences, e.g., resuspension of dust. Air humidity also showed a great influence on the recorded particle measurements. In areas of high vehicle dynamics, such as heavy braking or accelerating, more tyre and brake particles could be found

    Stirring by small-scale vortices caused by patchy mixing

    Get PDF
    Author Posting. © American Meteorological Society, 2005. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 35 (2005): 1245-1262, doi:10.1175/JPO2713.1.Evidence is presented that lateral dispersion on scales of 1–10 km in the stratified waters of the continental shelf may be significantly enhanced by stirring by small-scale geostrophic motions caused by patches of mixed fluid adjusting in the aftermath of diapycnal mixing events. Dye-release experiments conducted during the recent Coastal Mixing and Optics (CMO) experiment provide estimates of diapycnal and lateral dispersion. Microstructure observations made during these experiments showed patchy turbulence on vertical scales of 1–10 m and horizontal scales of a few hundred meters to a few kilometers. Momentum scaling and a simple random walk formulation were used to estimate the effective lateral dispersion caused by motions resulting from lateral adjustment following episodic mixing events. It is predicted that lateral dispersion is largest when the scale of mixed patches is on the order of the internal Rossby radius of deformation, which seems to have been the case for CMO. For parameter values relevant to CMO, lower-bound estimates of the effective lateral diffusivity by this mechanism ranged from 0.1 to 1 m2s−1. Revised estimates after accounting for the possibility of long-lived motions were an order of magnitude larger and ranged from 1 to 10 m2s−1. The predicted dispersion is large enough to explain the observed lateral dispersion in all four CMO dye-release experiments examined.The Coastal Mixing and Optics dye studies were funded by the Office of Naval Research under Grants N00014-95-1-0633 (tracer experiments) and N00014-95-1-1063 (AASERT fellowship). Additional analysis was also performed under ONR Grant N00014-01-1-0984

    The LatMix summer campaign : submesoscale stirring in the upper ocean

    Get PDF
    Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Bulletin of the American Meteorological Society 96 (2015): 1257–1279, doi:10.1175/BAMS-D-14-00015.1.Lateral stirring is a basic oceanographic phenomenon affecting the distribution of physical, chemical, and biological fields. Eddy stirring at scales on the order of 100 km (the mesoscale) is fairly well understood and explicitly represented in modern eddy-resolving numerical models of global ocean circulation. The same cannot be said for smaller-scale stirring processes. Here, the authors describe a major oceanographic field experiment aimed at observing and understanding the processes responsible for stirring at scales of 0.1–10 km. Stirring processes of varying intensity were studied in the Sargasso Sea eddy field approximately 250 km southeast of Cape Hatteras. Lateral variability of water-mass properties, the distribution of microscale turbulence, and the evolution of several patches of inert dye were studied with an array of shipboard, autonomous, and airborne instruments. Observations were made at two sites, characterized by weak and moderate background mesoscale straining, to contrast different regimes of lateral stirring. Analyses to date suggest that, in both cases, the lateral dispersion of natural and deliberately released tracers was O(1) m2 s–1 as found elsewhere, which is faster than might be expected from traditional shear dispersion by persistent mesoscale flow and linear internal waves. These findings point to the possible importance of kilometer-scale stirring by submesoscale eddies and nonlinear internal-wave processes or the need to modify the traditional shear-dispersion paradigm to include higher-order effects. A unique aspect of the Scalable Lateral Mixing and Coherent Turbulence (LatMix) field experiment is the combination of direct measurements of dye dispersion with the concurrent multiscale hydrographic and turbulence observations, enabling evaluation of the underlying mechanisms responsible for the observed dispersion at a new level.The bulk of this work was funded under the Scalable Lateral Mixing and Coherent Turbulence Departmental Research Initiative and the Physical Oceanography Program. The dye experiments were supported jointly by the Office of Naval Research and the National Science Foundation Physical Oceanography Program (Grants OCE-0751653 and OCE-0751734).2016-02-0

    How Do Flies Land?

    No full text
    • 

    corecore