61 research outputs found

    Aversive memory formation in humans involves an amygdala-hippocampus phase code

    Full text link
    Memory for aversive events is central to survival but can become maladaptive in psychiatric disorders. Memory enhancement for emotional events is thought to depend on amygdala modulation of hippocampal activity. However, the neural dynamics of amygdala-hippocampal communication during emotional memory encoding remain unknown. Using simultaneous intracranial recordings from both structures in human patients, here we show that successful emotional memory encoding depends on the amygdala theta phase to which hippocampal gamma activity and neuronal firing couple. The phase difference between subsequently remembered vs. not-remembered emotional stimuli translates to a time period that enables lagged coherence between amygdala and downstream hippocampal gamma. These results reveal a mechanism whereby amygdala theta phase coordinates transient amygdala -hippocampal gamma coherence to facilitate aversive memory encoding. Pacing of lagged gamma coherence via amygdala theta phase may represent a general mechanism through which the amygdala relays emotional content to distant brain regions to modulate other aspects of cognition, such as attention and decision-making

    PTPN22.6, a Dominant Negative Isoform of PTPN22 and Potential Biomarker of Rheumatoid Arthritis

    Get PDF
    PTPN22 is a tyrosine phosphatase and functions as a damper of TCR signals. A C-to-T single nucleotide polymorphism (SNP) located at position 1858 of human PTPN22 cDNA and converting an arginine (R620) to tryptophan (W620) confers the highest risk of rheumatoid arthritis among non-HLA genetic variations that are known to be associated with this disease. The effect of the R-to-W conversion on the phosphatase activity of PTPN22 protein and the impact of the minor T allele of the C1858T SNP on the activation of T cells has remained controversial. In addition, how the overall activity of PTPN22 is regulated and how the R-to-W conversion contributes to rheumatoid arthritis is still poorly understood. Here we report the identification of an alternative splice form of human PTPN22, namely PTPN22.6. It lacks the nearly entire phosphatase domain and can function as a dominant negative isoform of the full length PTPN22. Although conversion of R620 to W620 in the context of PTPN22.1 attenuated T cell activation, expression of the tryptophan variant of PTPN22.6 reciprocally led to hyperactivation of human T cells. More importantly, the level of PTPN22.6 in peripheral blood correlates with disease activity of rheumatoid arthritis. Our data depict a model that can reconcile the conflicting observations on the functional impact of the C1858T SNP and also suggest that PTPN22.6 is a novel biomarker of rheumatoid arthritis

    Bats' Conquest of a Formidable Foraging Niche: The Myriads of Nocturnally Migrating Songbirds

    Get PDF
    Along food chains, i.e., at different trophic levels, the most abundant taxa often represent exceptional food reservoirs, and are hence the main target of consumers and predators. The capacity of an individual consumer to opportunistically switch towards an abundant food source, for instance, a prey that suddenly becomes available in its environment, may offer such strong selective advantages that ecological innovations may appear and spread rapidly. New predator-prey relationships are likely to evolve even faster when a diet switch involves the exploitation of an unsaturated resource for which few or no other species compete. Using stable isotopes of carbon and nitrogen as dietary tracers, we provide here strong support to the controversial hypothesis that the giant noctule bat Nyctalus lasiopterus feeds on the wing upon the multitude of flying passerines during their nocturnal migratory journeys, a resource which, while showing a predictable distribution in space and time, is only seasonally available. So far, no predator had been reported to exploit this extraordinarily diverse and abundant food reservoir represented by nocturnally migrating passerines

    Genome-Wide Identification of Susceptibility Alleles for Viral Infections through a Population Genetics Approach

    Get PDF
    Viruses have exerted a constant and potent selective pressure on human genes throughout evolution. We utilized the marks left by selection on allele frequency to identify viral infection-associated allelic variants. Virus diversity (the number of different viruses in a geographic region) was used to measure virus-driven selective pressure. Results showed an excess of variants correlated with virus diversity in genes involved in immune response and in the biosynthesis of glycan structures functioning as viral receptors; a significantly higher than expected number of variants was also seen in genes encoding proteins that directly interact with viral components. Genome-wide analyses identified 441 variants significantly associated with virus-diversity; these are more frequently located within gene regions than expected, and they map to 139 human genes. Analysis of functional relationships among genes subjected to virus-driven selective pressure identified a complex network enriched in viral products-interacting proteins. The novel approach to the study of infectious disease epidemiology presented herein may represent an alternative to classic genome-wide association studies and provides a large set of candidate susceptibility variants for viral infections

    GWAS meta-analysis of over 29,000 people with epilepsy identifies 26 risk loci and subtype-specific genetic architecture

    Get PDF
    Epilepsy is a highly heritable disorder affecting over 50 million people worldwide, of which about one-third are resistant to current treatments. Here we report a multi-ancestry genome-wide association study including 29,944 cases, stratified into three broad categories and seven subtypes of epilepsy, and 52,538 controls. We identify 26 genome-wide significant loci, 19 of which are specific to genetic generalized epilepsy (GGE). We implicate 29 likely causal genes underlying these 26 loci. SNP-based heritability analyses show that common variants explain between 39.6% and 90% of genetic risk for GGE and its subtypes. Subtype analysis revealed markedly different genetic architectures between focal and generalized epilepsies. Gene-set analyses of GGE signals implicate synaptic processes in both excitatory and inhibitory neurons in the brain. Prioritized candidate genes overlap with monogenic epilepsy genes and with targets of current antiseizure medications. Finally, we leverage our results to identify alternate drugs with predicted efficacy if repurposed for epilepsy treatment
    • …
    corecore